In this paper we show that blocking sets of cardinality less than 3(q ϩ 1)/2 (q ϭ p n ) in Desarguesian projective planes intersect every line in 1 modulo p points. It is also shown that the cardinality of a blocking set must lie in a few relatively short intervals. This is similar to previous results of Ré dei, which were proved for a special class of blocking sets. In the particular case q ϭ p 2 , the above result implies that a nontrivial blocking set either contains a Baer-subplane or has size at least 3(q ϩ 1)/2; and this result is sharp. As a by-product, new proofs are given for the Jamison, Brouwer-Schrijver theorem on blocking sets in Desarguesian affine planes, and for Blokhuis' theorem on blocking sets in Desarguesian projective planes.
We show for $k \geq 2$ that if $q\geq 3$ and $n \geq 2k+1$, or $q=2$ and $n \geq 2k+2$, then any intersecting family ${\cal F}$ of $k$-subspaces of an $n$-dimensional vector space over $GF(q)$ with $\bigcap_{F \in {\cal F}} F=0$ has size at most $\left[{n-1\atop k-1}\right]-q^{k(k-1)}\left[{n-k-1\atop k-1}\right]+q^k$. This bound is sharp as is shown by Hilton-Milner type families. As an application of this result, we determine the chromatic number of the corresponding $q$-Kneser graphs.
In this note we prove that projective planes of order q have defining sets of size o(q 2 ), improving a result of Gray et al. [On the size of the smallest defining set of PG(2, q), Bull. Inst. Combin. Appl. 21 (1997) 91-94].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.