The possibility of replacing the originally discovered and widely used DNA reprogramming transcription factors is stimulating enormous effort to identify more effective compounds that would not alter the genetic information. Here, we describe the generation of induced pluripotent stem cells (iPSc) from head-derived primary culture of mouse embryonic cells using small chemical inhibitors of the MEK and TGF-beta pathways without delivery of exogenous transcription factors. These iPSc express standard pluripotency markers and retain their potential to differentiate into cells of all germ layers. Our data indicate that head-derived embryonic neural cells might have the reprogramming potential while neither the same primary cells cultivated over five passages in vitro nor a cell population derived from adult brain possesses this capacity. Our results reveal the potential for small molecules to functionally replace routinely used transcription factors and lift the veil on molecular regulation controlling pluripotency. The conditions described here could provide a platform upon which other genome non integrative and safer reprogramming processes could be developed. This work also shows novel potential for developing embryonic neural cells.
Lamin A, B and C, the nuclear intermediate-filament proteins, play a role in epigenetic regulation. While Lamin B is expressed in all nucleated cells studied, Lamin A/C are transcribed in most somatic cell types except mature B lymphocytes. Since Epstein-Barr virus (EBV), a human gammaherpesvirus, is associated with tumorigenic processes and is known to alter the epigenotype of its host cells, we studied the expression of the LMNA gene and its epigenetic marks in EBV-carrying human lymphoid cell lines. We observed a high lamin A/C mRNA and protein expression in EBV-immortalized lymphoblastoid cell lines (LCLs) and in group III Burkitt lymphoma (BL) lines where hypomethylated first exons were observed with activating histone marks. In most cell lines with low promoter activity a highly methylated first exon could be detected. Our data showed that methylation of the first exon of LMNA was associated with the downregulation of LMNA expression whereas euchromatic histone marks were enriched at active LMNA promoters in EBV-immortalized LCLs. These data suggest a role for viral latency products to activate LMNAp in EBV-infected latency type III B cells in vitro. Expression of lamin A/C may contribute to the establishment of activated B cell phenotype that needs further explorations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.