Pedestrian and vehicular navigation relies mainly on Global Navigation Satellite System (GNSS). Even if different navigation systems are integrated, GNSS positioning remains the core of any navigation process as it is the only system capable of providing independent solutions. However, in harsh environments, especially urban ones, GNSS signals are confronted by many obstructions causing the satellite signals to reach the receivers through reflected paths. These No-Line of Sight (NLOS) signals can affect the positioning accuracy significantly. This contribution proposes a new algorithm to detect and exclude these NLOS signals using 3D building models constructed from Volunteered Geographic Information (VGI). OpenStreetMap (OSM) and Google Earth (GE) data are combined to build the 3D models incorporated with GNSS signals in the algorithm. Real field data are used for testing and validation of the presented algorithm and strategy. The accuracy improvement, after exclusion of the NLOS signals, is evaluated employing phase-smoothed code observations. The results show that applying the proposed algorithm can improve the horizontal positioning accuracy remarkably. This improvement reaches 10.72 m, and the Root Mean Square Error (RMSE) drops by 1.64 m (46 % improvement) throughout the epochs with detected NLOS satellites. In addition, the improvement is analyzed in the Along-Track (AT) and Cross-Track (CT) directions. It reaches 6.89 m in the AT direction with a drop of 1.076 m in the RMSE value, while it reaches 8.64 m with a drop of 1.239 m in the RMSE value in the CT direction.
Real-time positioning in suburban and urban environments has been a challenging task for many Intelligent Transportation Systems (ITS) applications. In these environments, positioning using Global Navigation Satellite Systems (GNSS) cannot provide continuous solutions due to the blockage of signals in harsh scenarios. Consequently, it is intrinsic to have an independent positioning system capable of providing accurate and reliable positional solutions over GNSS outages. This study exploits the integration of Light Detection and Ranging (LiDAR), gyroscope, and odometer sensors, and a novel real-time algorithm is proposed for this integration. Real field data, collected by a moving land vehicle, is used to test the presented algorithm. Three simulated GNSS outages are introduced in the trajectory such that each outage lasts for five minutes. The results show that using the proposed algorithm can achieve a promising navigation performance in urban environments. In addition, it is shown that the denser environments, that existed over the second and third outages, can provide better positioning accuracies as more features are extracted. The horizontal errors over the first outage, with less density of surroundings, reached 7.74 m (0.43%) error with a mean value of 3.15 m. Moreover, the horizontal errors in the denser environments over the second and third outages reached 4.97 m (0.28%) and 3.99 m (0.23%), with mean values of 2.25 m and 1.89 m, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.