Organic cropping systems that utilize winter grown cereal–legume cover crop mixtures can increase plant available nitrogen (N) to a subsequent cash crop, but the rate of N release is uncertain due to variations in residue composition and environmental conditions. A study was conducted to evaluate N availability from rye (Secale cereale L.)–hairy vetch (Vicia villosa Roth) cover crop mixtures and to measure the response of organically grown sweet corn (Zea mays L.) to N provided by cover crop mixtures. Nitrogen availability from pure rye, pure hairy vetch, and rye–vetch mixtures was estimated using laboratory incubation with controlled temperature and soil moisture. Sweet corn N response was determined in a 2-year field experiment in western Washington with three cover crop treatments as main plots (50:50 rye–vetch seed mixture planted mid September, planted early October, and none) and four feather meal N rates as subplots (0, 56, 112 and 168 kg available N ha−1). Pure hairy vetch and a 75% rye–25% hairy vetch biomass mixture (R75V25) released similar amounts of N over 70 days in the laboratory incubation. But, the initial release of N from the (R75V25) treatment was nearly 70% lower, which may result in N release that is better timed with crop uptake. Cover crops in the field were dominated by rye and contained 34–76 kg ha−1 total N with C:N ranging from 18 to 27. Although time of planting and management of cover crop quality improved N uptake in sweet corn, cover crops provided only supplemental plant available N in this system.
Pseudomonas fluorescens strain D7 (P. f. D7; NRRL B-18293) is a root-colonizing bacterium that inhibits downy brome (Bromus tectorum L. BROTE) growth. Before commercialization as a biological control agent, strain D7 must be tested for host plant specificity. Agar plate bioassays in the laboratory and plant–soil bioassays in a growth chamber were used to determine the influence of P. f. D7 on germination and root growth of 42 selected weed, cultivated or native plant species common in the western and midwestern United States. In the agar plate bioassay, all accessions of downy brome were inhibited by P. f. D7. Root growth of seven Bromus spp. was inhibited an average of 87% compared with that of controls in the agar plate bioassay. Root growth of non-Bromus monocots was reduced by 0 to 86%, and only 6 out of 17 plant species were inhibited 40% or greater. Among all plant species, only downy brome root growth from two accessions was significantly inhibited by P. f. D7 in plant–soil bioassays (42 and 64%). P. f. D7 inhibited root growth and germination in agar plate bioassays more than in plant–soil bioassays. Inhibition in plant–soil bioassays was limited to downy brome, indicating promise for P. f. D7 as a biocontrol agent that will not harm nontarget species.
Cropping systems in the dryland farming region of eastern Washington State are dominated by winter and spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.). Excessive levels of residue may be an obstacle in the adoption of conservation farming systems. Decomposition of cereal crop residues is associated with fi ber and nutrient content, and growers have observed diff erences in decomposition among cultivars; however, little information exists on their residue characteristics. Cultivars of spring barley (SB), spring wheat (SW), and winter wheat (WW) grown at four locations over two crop years were analyzed for neutral detergent fi ber (NDF), acid detergent fi ber (ADF), acid detergent lignin (ADL), C, and N contents, and winter wheat decomposition was tested in a laboratory incubation study. Acid detergent lignin was highest in spring barley (9.9%), and least in winter wheat (9.2%) and hard white spring wheat (9.5%). Fiber components and nutrient content varied by location, precipitation zone, and cultivar. Residue in the drier year of the study had lower NDF, ADF, ADL, C, and C/N ratio. Foot rot (Fusarium spp.)-resistant winter wheat cultivars had higher NDF, ADF, and ADL than susceptible cultivars. Laboratory incubation studies showed decomposition of winter wheat straw in soil was correlated with ADF (R 2 > 0.66, P = 0.002) and total N (R 2 > 0.67, P = 0.04). Fiber and nutrient characteristics of residue from wheat and barley cultivars currently produced in the Pacifi c Northwest can be used to predict residue decomposition in cropping systems that conserve soil and water, and enhance build-up of organic matter.
Residue from cultivars of spring wheat (Triticum aestivum L.), winter wheat, and spring barley (Hordeum vulgare L.) was characterized for fiber and nutrient traits using reference methods and near-infrared spectroscopy (NIRS). Calibration models were developed for neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), carbon (C), sulfur (S), nitrogen (N), and C:N. When calibrations were tested against validation sets for each crop year, NIRS was an acceptable method for predicting NDF (standard error of prediction (SEP)<0.87; R2>0.90) and ADF (SEP< 0.81; R2>0.92) and moderately successful for ADL in 1 year of the study (SEP=0.44; R2=0.81) but less successful for C, S, N, and C:N (R2 all<0.57). These results indicate that NIRS can predict the NDF and ADF of cereal residue from dryland cropping systems and is a useful tool to estimate residue decomposition potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.