The chemical reaction of 2,3-naphthyridine, a nitrogen-containing aromatic compound, was investigated at pressures ranging from 0.5 to 1.5 GPa and temperatures from 473 to 573 K. A distinct decrease in the amount of residual 2,3-naphthyridine was observed in the samples recovered after reaction at ˃523 K at 0.5 and 1.0 GPa, and ˃548 K at 1.5 GPa. The formation of
o
-xylene and
o
-tolunitrile accompanied a decreasing N/C ratio of the reaction products, indicating decomposition of the aromatic ring and release of nitrogen. Precise analysis of the reaction products indicated the oligomerization of decomposed products with the residual 2,3-naphthyridine to form larger molecules up to 7mers. Nitrogen in the aromatic ring accelerated reactions to decompose the molecule and to oligomerize at lower temperatures than those typically reported for aromatic hydrocarbon oligomerization. The major reaction mechanism was similar between 0.5 and 1.5 GPa, although larger products preferentially formed in the samples at higher pressure.
Pressure-induced oligomerization was found from high-pressure experiments at 25 °C on alanine powder soaked in its saturated aqueous solution. The oligomerization to alanylalanine occurred at 5 GPa. The maximum yields of alanylalanine and trialanine were, respectively, 1.1 × 10(-3) and 1.3 × 10(-4) at 11 GPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.