Early descriptions of in vitro ACTH bioassays all emphasised the need to use extracted plasma samples due to interference by an unidentified component. The aim of these studies was to elucidate the effects of whole plasma on ACTH steroidogenic activity in vitro and to identify the responsible factor. A sensitive in vitro dispersed bovine adrenocortical cell bioassay was established. The addition of 10% ACTH-depleted human pooled plasma to the incubation media resulted in basal steroidogenesis equivalent to that achieved with 10 9 M ACTH 1-24 and potentiated the steroidogenic activity of 10 9 M ACTH 1-24 by 7·8-fold. This potentiation was dependent on the concentration of both ACTH and plasma in the media, but did not result from the mitogenic effect of plasma. A pituitary source was excluded and the potentiating activity was not extractable by Vycor glass. Column chromatography demonstrated two peaks of activity corresponding to molecular weights of 650 and 220 10 3 Da. These peaks did not correspond to the plasma binding of 125 I-ACTH which resulted from non-specific binding to albumin. Lipoprotein-deficient serum had no effect on either basal or ACTH-stimulated steroidogenesis, but both were restored by the addition of purified lipoproteins. However, novel findings demonstrated a differential effect of low (LDL) and high (HDL) density lipoproteins on basal and ACTH-stimulated steroid production; thus, LDL exerted a greater effect on the former, whilst HDL potentiated the steroidogenic activity of added ACTH more than LDL. The addition of the lipoproteins to lipoprotein-deficient serum restored its basal and ACTH potentiating effects, the cholesterol concentrations of the chromatographic fractions exactly paralleling their ACTH potentiating effect. These findings suggest that not only are lipoproteins the plasma factor(s) which potentiates ACTH steroidogenic activity in in vitro bioassays, but also that they exert differential effects on basal and ACTH-stimulated steroid production.
1619 Background: Sickle Cell Disease (SCD) is a chronic debilitating hematologic condition caused by a missense mutation within the adult beta globin gene leading to significant morbidity and mortality. Increased Fetal Hemoglobin production has been shown to significantly ameliorate SCD symptoms and improve survival. A novel specific DNA-binding factor DRED (direct repeat erythroid definitive) was recently identified that regulated epsilon and gamma globin gene expression (Tanimoto et al Genes Dev 2000). Purification of DRED revealed that it harbored the nuclear orphan hormone receptors, TR2/TR4, as its DNA binding core (Tanabe et al EMBO 2002). Overexpression of TR2/TR4 Transgene within Human Beta Globin Yeast Artificial Chromosome Transgenic Mice resulted in 4-fold induction of the gamma globin mRNA levels (Tanabe et al EMBO 2007). Therefore, we wanted to determine if the overexpression of TR2/TR4 within a humanized sickle cell disease model would result in fetal hemoglobin induction. Methods: Humanized Homozygous Knock-In UAB-Sickle Cell (UAB-Hbahα/hα Hbbhβs/hβs) Mice (Wu et al Blood 2006) was mated to TR2/TR4 Overexpressing Mice (TgTR2/TR4) to generate homozygous SS-TR2/TR4 compound heterozygotes (UAB-Hba hα/hα Hbb hβs/hβs TgTR2/TR4). We generated four 2–3 month old homozygous SS-TR2/TR4 transgenic mice and compared hemoglobin F levels, complete blood cell counts and % body weight (liver, spleen, kidney) to six 2–3 month old homozygous SS mice (Hbahα/hα Hbb hβs/hβs)without the overexpressing TgTR2/TR4. Tail PCR genotyping of all sickle cell mice (with and without TgTR2/TR4) and Hemoglobin F(Hgb F) and Sickle (HgbS) levels were confirmed by HPLC Hemoglobin electrophoresis. Results: The mean Hgb F: 7.8% (n=6, sd 1.63+/−) in the homozygous SS control mice vs. 16.5% (n=4, sd 2.64+/−)in the homozygous SS-TR2/4 Mice (2 Fold higher). Hematologic profile revealed a mean Hct: 25.2 (n=6, sd 5.50 +/−) mean MCV: 75.4 (n=6, sd 10+/−) and a mean WBC: 22.6 (n= 6, sd 13.9 +/−) in the homozygous SS control mice vs. a mean Hct: 31.25(n=4, sd 6.89+/−), mean MCV: 61(n=4, sd 3.5+/−) mean WBC: 16.3(n= 4, sd 5.99+/−) in the homozygous SS-TR2/TR4 mice. Lastly, initial organ (spleen, liver, kidney) pathology evaluation revealed decreased % body weight (bw) in homozygous SS TR2/TR4 Mice vs. homozygous SS controls: 1) Spleen %bw: 4.3% vs. 3.5% TgTR2/TR4), 2) Liver % bw: 8.8% vs. 7.7% TgTR2/TR4), and 3) Kidney %bw: 1.14% vs. 1.02% TgTR2/TR4). Conclusions: Our preliminary analysis revealed that TR2/TR4 overexpression within a humanized sickle cell disease mouse model resulted in a 2-fold induction of fetal hemoglobin based on HPLC hemoglobin electrophoresis. Further, increased TR2/TR4 overexpression improved anemia and organomegaly within sickle cell disease mice. TR2/TR4 may be an attractive target for fetal hemoglobin induction for the treatment of sickle cell disease. Ongoing studies will determine if TR2/TR4 decreases organ specific disease pathology. We will also determine the cellular distribution of fetal hemoglobin in future studies. Disclosures: No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.