Neutral (N)-ionic (I) transitions in organic donor (D)/acceptor (A) charge-transfer complexes are intriguing because a 'reservoir of functions' is available. For systematically controlling N-I transitions, tuning the ionization potential of D and the electron affinity of A is extremely important. However, the effect of Coulomb interactions, which likely causes a number of charge-gap states at once in a system bringing about stepwise transitions, is a long-standing mystery. Here, we show definite evidence for stepwise N-I transitions caused by contributions from anisotropic interchain Coulomb interactions in a metal-complex-based covalently bonded DA chain compound, [Ru(2)(2,3,5,6-F(4)PhCO(2))(4)(DMDCNQI)]·2(p-xylene) (1; 2,3,5,6-F(4)PhCO(2)(-) = 2,3,5,6-tetrafluorobenzoate; DMDCNQI = 2,5-dimethyl-N,N'-dicyanoquinonediimine), where the [Ru(2)(II,II)(2,3,5,6-F(4)PhCO(2))(4)] moiety has a paddlewheel diruthenium(II,II) motif with a Ru-Ru bond. An intermediate-temperature phase involving self-organized N and I chains was observed in the temperature range between 210 K (= T(2)) and 270 K (= T(1)) with N phase at T > T(1) and I phase at T < T(2). Accompanying the charge transitions, the spin-ground states as well as the ferrimagnetic ordering in the I phase vary. The stepwise feature of the N-I transition with a highly sensitive magnetic response should bring about new dynamical functionalities associated with charge, spin, and lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.