In recent years, vehicle ad hoc networks (VANETs) have garnered considerable interest in the field of intelligent transportation systems (ITS) due to the added safety and preventive measures for drivers and passengers. Regardless of the benefits provided by VANET, it confronts various challenges, most notably in terms of user/message security and privacy. Due to the decentralised nature of VANET and its changeable topologies, it is difficult to detect rogue or malfunctioning nodes or users. Using an improved grasshopper optimization algorithm (IGOA-PHE) technique in VANETs, this research develops a new privacy-preserving partly homomorphic encryption with optimal key generation. The suggested IGOA-PHE approach is intended to provide privacy and security in VANETs. The proposed IGOA-PHE technique consists of two stages: an ElGamal public key cryptosystem (EGPKC) for PHE and an optimised key generation procedure based on IGOA. To enhance the security of the EGPKC approach, the keys are selected ideally utilising the IGOA. Additionally, the IGOA is derived by using Gaussian mutation (GM) and Levy flights ideas. The experimental investigation of the proposed IGOA-PHE approach is extensive. The resulting results demonstrated that the provided IGOA-PHE technique outperformed recent state-of-theart methods.
In recent days, vehicular ad hoc networks (VANETs) has gained significant interest in the field of intelligent transportation system (ITS) owing to the safety and preventive measures to the drivers and passengers. Regardless of the merits provided by VANET, it faces several issues, particularly with respect to security and privacy of users/messages. Because of the decentralized structure and dynamic topologies of VANET, it is hard to detect malicious or faulty nodes or users. With this motivation, this paper designs new privacy preserving partially homomorphic encryption with optimal key generation using improved grasshopper optimization algorithm (IGOA-PHE) technique in VANETs. The goal of the proposed IGOA-PHE technique aims to achieve privacy and security in VANET. The proposed IGOA-PHE technique involves two stage processes namely ElGamal public key cryptosystem (EGPKC) for PHE and IGOA based optimal key generation process. In order to improve the security of the EGPKC technique, the keys are optimally chosen using the IGOA. Besides, the IGOA is derived by incorporating the concepts of Gaussian mutation (GM) and Levy flights. The experimental analysis of the proposed IGOA-PHE technique is examined in a wide range of experiments. The resultant outcomes exhibited the maximum performance of the presented IGOA-PHE technique over the recent state of art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.