Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M 2 (dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)The results reveal important, molecular level detail of CO 2 binding in a prominent family of Metal-Organic Frameworks whose adsorption properties can be readily tuned with metal-substitution. This information, which is of signifi cant importance in the context of carbon capture, allows us to make a detailed comparison with DFT calculations; theoretical results show excellent agreement with experimental determination of intramolecular CO 2 angles, CO 2 binding geometries, and isosteric heats of CO 2 adsorption.
An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ 2 H VSMOW-SLAP values from-210.8 to +397.0 mUr or ‰, for δ 13 C VPDB-LSVEC from-40.81 to +0.49 mUr, and for δ 15 N Air from-5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C 16 nalkanes, n-C 20-fatty acid methyl esters (FAMEs), glycines, and L-valines, together with polyethylene powder and string, one n-C 17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2 H-enriched vacuum oil. Eleven laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic calibrations against international primary measurement standards. The use of reference waters in silver tubes allowed direct calibration of δ 2 H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Due to exchangeable hydrogen, amino acid RMs currently are recommended only for carbon-and nitrogen-isotope measurements. Some amino acids contain 13 C and carbon-bound organic 2 Henrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.
Emerging therapeutic treatments based on the production of proteins by delivering mRNA have become increasingly important in recent times. While lipid nanoparticles (LNPs) are approved vehicles for small interfering RNA delivery, there are still challenges to use this formulation for mRNA delivery. LNPs are typically a mixture of a cationic lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and a PEG-lipid. The structural characterization of mRNA-containing LNPs (mRNA-LNPs) is crucial for a full understanding of the way in which they function, but this information alone is not enough to predict their fate upon entering the bloodstream. The biodistribution and cellular uptake of LNPs are affected by their surface composition as well as by the extracellular proteins present at the site of LNP administration, e.g., apolipoproteinE (ApoE). ApoE, being responsible for fat transport in the body, plays a key role in the LNP’s plasma circulation time. In this work, we use small-angle neutron scattering, together with selective lipid, cholesterol, and solvent deuteration, to elucidate the structure of the LNP and the distribution of the lipid components in the absence and the presence of ApoE. While DSPC and cholesterol are found to be enriched at the surface of the LNPs in buffer, binding of ApoE induces a redistribution of the lipids at the shell and the core, which also impacts the LNP internal structure, causing release of mRNA. The rearrangement of LNP components upon ApoE incubation is discussed in terms of potential relevance to LNP endosomal escape.
We demonstrate that water is almost universally present on apparently dry self-assembled monolayers, even on those considered almost hydrophobic by conventional methods such as water contact goniometry. The structure and kinetics of nanoscale water adsorption onto these surfaces were investigated using X-ray and neutron reflectometry, as well as atomic force microscopy. Condensation of water on hydrophilic surfaces under ambient conditions formed a dense sub-nanometre surface layer; the thickness of which increased with exponentially limiting kinetics. Tapping mode AFM measurements show the presence of nanosized droplets that covered a small percentage (∼2%) of the total surface area, and which became fewer in number and larger in size with time. While low vacuum pressures (∼10-8 bar) at room temperature did nothing to remove the adsorbed water from these monolayers, heating to temperatures above 65 °C under atmospheric conditions did lead to evaporation from the surface. We demonstrate that water contact angle measurements are not necessarily sensitive to the presence of nanoscale adsorbed water and do not vary with time. For the most part they are a poor indicator of the kinetics and the amount of water condensation onto these surfaces at the molecular level. In summary, this study reveals the need to exclude air containing even trace amounts of water vapor from such surfaces when characterizing using techniques such as X-ray reflectometry. 2011 The Royal Society of Chemistry. We demonstrate that water is almost universally present on apparently dry self-assembled monolayers, even on those considered almost hydrophobic by conventional methods such as water contact goniometry. The structure and kinetics of nanoscale water adsorption onto these surfaces were investigated using X-ray and neutron reflectometry, as well as atomic force microscopy. Condensation of water on hydrophilic surfaces under ambient conditions formed a dense sub-nanometre surface layer; the thickness of which increased with exponentially limiting kinetics. Tapping mode AFM measurements show the presence of nanosized droplets that covered a small percentage ($2%) of the total surface area, and which became fewer in number and larger in size with time. While low vacuum pressures ($10 À8 bar) at room temperature did nothing to remove the adsorbed water from these monolayers, heating to temperatures above 65 C under atmospheric conditions did lead to evaporation from the surface.We demonstrate that water contact angle measurements are not necessarily sensitive to the presence of nanoscale adsorbed water and do not vary with time. For the most part they are a poor indicator of the kinetics and the amount of water condensation onto these surfaces at the molecular level. In summary, this study reveals the need to exclude air containing even trace amounts of water vapor from such surfaces when characterizing using techniques such as X-ray reflectometry.
The hydrogen storage properties of a new family of isostructural metal−organic frameworks are reported. The frameworks M 2 (dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc 4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) are analogous to the widely studied M 2 (dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn; dobdc 4− = 2,5-dioxido-1,4-benzenedicarboxylate) family of materials, featuring the same weak-field oxo-based ligand environment for the M 2+ metal centers, but with a larger pore volume resulting from the extended length of the dobpdc 4− linker. Hydrogen gas adsorption isotherms measured at 77 and 87 K indicate strong H 2 binding at low pressures, corresponding to the adsorption of one molecule per M 2+ site. Isosteric heats of adsorption indicate adsorption enthalpies ranging from −8.8 to −12.0 kJ/mol, with the trend Zn < Mn < Fe < Mg < Co < Ni. Room-temperature high-pressure adsorption isotherms indicate enhanced gravimetric uptakes compared to the M 2 (dobdc) analogues, a result of the higher surface areas and pore volumes of the expanded frameworks. Indeed, powder neutron diffraction experiments performed on Fe 2 (dobpdc) reveal two additional secondary H 2 adsorption sites not observed for the nonexpanded framework. While displaying higher gravimetric capacities than their nonexpanded counterparts, the larger pore volumes result in lower volumetric capacities. Upon comparison with other promising frameworks for hydrogen storage, it becomes evident that in order to design future materials for on-board hydrogen storage, care must be placed in achieving both a high surface area and a high volumetric density of exposed metal cation sites in order to maximize gravimetric and volumetric capacities simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.