P-glycoprotein (P-gp), a drug efflux pump, is known to alter the bioavailability of antiretroviral drugs at several sites, including the brain. We have previously shown that human immunodeficiency virus-1 (HIV-1) glycoprotein 120 (gp120) induces proinflammatory cytokine secretion and decreases P-gp functional expression in rat astrocytes, a cellular reservoir of HIV-1. However, whether P-gp is regulated in a similar way in human astrocytes is unknown. This study investigates the regulation of P-gp in an in vitro model of gp120-triggered human fetal astrocytes (HFAs). In this system, elevated levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α were detected in culture supernatants. Pretreatment with CCR5 neutralizing antibody attenuated cytokine secretion, suggesting that gp120-CCR5 interaction mediated cytokine production. Treatment with gp120 (R5-tropic) resulted in reduced P-gp expression (64%) and function as determined by increased (1.6-fold) cellular accumulation of [3H]digoxin, a P-gp substrate. Exposure to R5 or R5/X4-tropic viral isolates led to a down-regulation in P-gp expression (75% or 90%, respectively), and treatment with IL-6 also showed lower P-gp expression (50%). Moreover, IL-6 neutralizing antibody blocked gp120-mediated P-gp downregulation, suggesting that IL-6 is a key modulator of P-gp. Gp120- or IL-6-mediated downregulation of P-gp was attenuated by SN50 (a nuclear factor-κB [NF-κB] inhibitor), suggesting involvement of NF-κB signaling in P-gp regulation. Our results suggest that, similarly to the case with rodent astrocytes, pathophysiological stressors associated with brain HIV-1 infection have a downregulatory effect on P-gp functional expression in human astrocytes, which may ultimately result in altered antiretroviral drug accumulation within brain parenchyma.
BackgroundNeuroinflammation is a common immune response associated with brain human immunodeficiency virus-1 (HIV-1) infection. Identifying therapeutic compounds that exhibit better brain permeability and can target signaling pathways involved in inflammation may benefit treatment of HIV-associated neurological complications. The objective of this study was to implement an in vivo model of brain inflammation by intracerebroventricular administration of the HIV-1 viral coat protein gp120 in rats and to examine anti-inflammatory properties of HIV adjuvant therapies such as minocycline, chloroquine and simvastatin.MethodsMale Wistar rats were administered a single dose of gp120ADA (500 ng) daily for seven consecutive days, intracerebroventricularly, with or without prior intraperitoneal administration of minocycline, chloroquine or simvastatin. Maraviroc, a CCR5 antagonist, was administered intracerebroventricularly prior to gp120 administration for seven days as control. Real-time qPCR was used to assess gene expression of inflammatory markers in the frontal cortex, hippocampus and striatum. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) secretion in cerebrospinal fluid (CSF) was measured applying ELISA. Protein expression of mitogen-activated protein kinases (MAPKs) (extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs) and P38 kinases (P38Ks)) was detected using immunoblot analysis. Student’s t-test and ANOVA were applied to determine statistical significance.ResultsIn gp120ADA-injected rats, mRNA transcripts of interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) were significantly elevated in the frontal cortex, striatum and hippocampus compared to saline or heat-inactivated gp120-injected controls. In CSF, a significant increase in TNF-α and IL-1β was detected. Maraviroc reduced upregulation of these markers suggesting that the interaction of R5-tropic gp120 to CCR5 chemokine receptor is critical for induction of an inflammatory response. Minocycline, chloroquine or simvastatin attenuated upregulation of IL-1β and iNOS transcripts in different brain regions. In CSF, minocycline suppressed TNF-α and IL-1β secretion, whereas chloroquine attenuated IL-1β secretion. In gp120-injected animals, activation of ERK1/2 and JNKs was observed in the hippocampus and ERK1/2 activation was significantly reduced by the anti-inflammatory agents.ConclusionsOur data demonstrate that anti-inflammatory compounds can completely or partially reverse gp120-associated brain inflammation through an interaction with MAPK signaling pathways and suggest their potential role in contributing towards the prevention and treatment of HIV-associated neurological complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.