Three sesame genotypes (Rama, SI 1666 and IC 21706) were treated with physical (γ-rays: 200 Gy, 400 Gy or 600 Gy) or chemical (ethyl methane sulphonate, EMS: 0.5%, 1.0%, 1.5% or 2.0%) mutagens and their mutagenic effectiveness and efficiency were estimated in the M 2 generation. The M 3 generation was used to identify the most effective mutagen and dose for induction of mutations. The average effectiveness of EMS was much higher than γ-rays. The lowest dose of γ-rays (200 Gy) and the lowest concentration of EMS (0.5%) showed the highest mutagenic efficiency in all genotypes. Analysis of the M 3 generation data based on parameters such as the variance ratio and the difference in residual variances derived from the model of Montalván and Ando indicated that 0.5% concentration of EMS was the most effective treatment for inducing mutations.
Thirty mutant lines selected from 3 widely adapted genotypes of sesame viz. Rama, SI 1666 and IC 21706 (ten from each of the three genotypes), developed by induced physical (γ-rays) and chemical (EMS) mutagens, were evaluated against their respective control genotype for yield and its important attributes in M 4 generation to reveal the ramification of mutagens for disclosing the magnitude of variation among mutants in advance generation and also to identify the promising positive mutants to refurbish new improved varieties of sesame. Mutants professing higher seed yield were evaluated for oil quantity and quality. All selected mutant lines evinced improved seed yield over their respective controls. Irrespective of the genotypes highest yield was recorded in the line induced by 0.5% EMS. Based on mean seed yield and its components, selected 10 superior mutants, also possessed high oil percentage with a better oil profile having relatively more polyunsaturated fatty acid content, specially linoleic acid, than the control, indicating potentiality of mutation breeding to restructure plants with high yield, improved oil percentage and quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.