The genus Aeromonas is ubiquitous in aquatic environments encompassing a broad range of fish and human pathogens. Aeromonas strains are known for their enhanced capacity to acquire and exchange antibiotic resistance genes and therefore, are frequently targeted as indicator bacteria for monitoring antimicrobial resistance in aquatic environments. This study evaluated temporal trends in Aeromonas diversity and antibiotic resistance in two adjacent semi-intensive aquaculture facilities to ascertain the effects of antibiotic treatment on antimicrobial resistance. In the first facility, sulfadiazine-trimethoprim was added prophylactically to fingerling stocks and water column-associated Aeromonas were monitored periodically over an 11-month fish fattening cycle to assess temporal dynamics in taxonomy and antibiotic resistance. In the second facility, Aeromonas were isolated from fish skin ulcers sampled over a 3-year period and from pond water samples to assess associations between pathogenic strains to those in the water column. A total of 1200 Aeromonas isolates were initially screened for sulfadiazine resistance and further screened against five additional antimicrobials. In both facilities, strong correlations were observed between sulfadiazine resistance and trimethoprim and tetracycline resistances, whereas correlations between sulfadiazine resistance and ceftriaxone, gentamicin, and chloramphenicol resistances were low. Multidrug resistant strains as well as sul1, tetA, and intI1 gene-harboring strains were significantly higher in profiles sampled during the fish cycle than those isolated prior to stocking and these genes were extremely abundant in the pathogenic strains. Five phylogenetically distinct Aeromonas clusters were identified using partial rpoD gene sequence analysis. Interestingly, prior to fingerling stocking the diversity of water column strains was high, and representatives from all five clusters were identified, including an A. salmonicida cluster that harbored all characterized fish skin ulcer samples. Subsequent to stocking, diversity was much lower and most water column isolates in both facilities segregated into an A. veronii-associated cluster. This study demonstrated a strong correlation between aquaculture, Aeromonas diversity and antibiotic resistance. It provides strong evidence for linkage between prophylactic and systemic use of antibiotics in aquaculture and the propagation of antibiotic resistance.
Clinostomidae are digeneans characterized by a complex taxonomic history, continuously under revision based on both morphological and molecular analysis. Among the 14 species considered valid so far Clinostomum phalacrocoracis has been well described only at the adult stage, whereas the morphology of the metacercarial stage has been reported only once. During a parasitological survey carried out on 262 wild cichlids sampled from Lake Kinneret (Israel) metacercariae referable to C. phalacrocoracis were found in 18 fingerlings. In this study, we report this clinostomid species for the first time in wild fish from Israel describing the metacercarial stage of Clinostomum phalacrocoracis, coupling its morphological description with molecular analysis carried out on ITS rDNA and COI mtDNA sequences.
Myxosporean infections can cause severe damage to commercially grown tilapia. Here, we report a novel myxosporean that was found in gills of Oreochromis aureus male × Oreochromis niloticus female, which is an important aquaculture tilapia hybrid in Israel. Three-month-old fish were found to have cysts located in gill muscle tissue, which were filled with both immature and mature spores. Affected fish displayed higher mortality rate. Spore dimensions (10.8 ± 0.7 μm length × 6.8 ± 0.6 μm width) and molecular characterization using 18S ribosomal DNA revealed that the unknown parasite belongs in the Myxobolus clade. Based on the infection site, spore morphology and molecular characterization, we describe this parasite as Myxobolus bejeranoi n. sp. (MF401455). Phylogenetic analysis showed that the new species is most closely related to two Myxobolus spp. from O. niloticus in Egypt and Ghana.
Streptococcus iniae is a Gram-positive, opportunistically zoonotic bacterium infective to a wide variety of farmed and wild fish species worldwide. Outbreaks in wild fish can have detrimental environmental and cultural impacts, and mortality events in aquaculture can result in significant economic losses. As an emerging or re-emerging pathogen of global significance, understanding the coalescing factors contributing to piscine streptococcosis is crucial for developing strategies to control infections. Intraspecific antigenic and genetic variability of S. iniae has made development of autogenous vaccines a challenge, particularly where the diversity of locally endemic S. iniae strains is unknown. This study genetically and phenotypically characterized 11 S. iniae isolates from diseased wild and farmed fish from North America, Central America, and the Caribbean. A multilocus sequence analysis (MLSA) scheme was developed to phylogenetically compare these isolates to 84 other strains of Streptococcus spp. relevant to aquaculture. MLSA generated phylogenies comparable to established genotyping methods, and isolates formed distinct clades related to phenotype and host species. The endothelial Oreochromis mossambicus bulbus arteriosus cell line and whole blood from rainbow trout Oncorhynchus mykiss, Nile tilapia Oreochromis niloticus, and white sturgeon Acipenser transmontanus were used to investigate the persistence and virulence of the 11 isolates using in vitro assays. In vivo challenges using an O. niloticus model were used to evaluate virulence by the intragastric route of infection. Isolates showed significant differences (p < 0.05) in virulence and persistence, with some correlation to genogroup, establishing a basis for further work uncovering genetic factors leading to increased pathogenicity.
Intensive freshwater aquaculture in the Spring Valley, Israel, is implemented mainly in earthen fishponds and reservoirs that are stocked with a variety of edible fish species. Here we sampled six different healthy fish species from these intensive aquacultures. The fish were hybrid striped bass, European bass, red drum (all carnivores), hybrid tilapia, flathead grey mullet (both herbivores), and common carp (an omnivore). Significant differences were found among the intestinal microbiota of the six studied fish species. The microbiota composition diversity was strongly related to the trophic level of the fish, such that there was a significant difference between the carnivore and the herbivore species, while the omnivore species was not significantly different from either group. The most abundant genus in the majority of the fishes’ intestinal microbiota was Cetobacterium. Furthermore, we found that beside Cetobacterium, a unique combination of taxa with relative abundance >10% characterized the intestine microbiota of each fish species: unclassified Mycoplasmataceae, Aeromonas, and Vibrio (hybrid striped bass); Turicibacter and Clostridiaceae 1 (European bass); Vibrio (red drum); ZOR0006—Firmicutes (hybrid tilapia); unclassified Mycoplasmataceae and unclassified Vibrionaceae (flathead grey mullet); and Aeromonas (common carp). We conclude that each fish species has a specific bacterial genera combination that characterizes it. Moreover, diet and the trophic level of the fish have a major influence on the gut microbiota of healthy fish that grow in intensive freshwater aquaculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.