In this paper, a new robust and imperceptible digital image watermarking scheme that can overcome the limitation of traditional wavelet-based image watermarking schemes is proposed using hybrid transforms viz. Lifting wavelet transform (LWT), discrete cosine transform (DCT) and singular value decomposition (SVD). The scheme uses canny edge detector to select blocks with higher edge pixels. Two reference sub-images, which are used as the point of reference for watermark embedding and extraction, have been formed from selected blocks based on the number of edges. To achieve a better trade-off between imperceptibility and robustness, multiple scaling factors (MSF) have been employed to modulate different ranges of singular value coefficients during watermark embedding process. Particle swarm optimization (PSO) algorithm has been adopted to obtain optimized MSF. The performance of the proposed scheme has been assessed under different conditions and the experimental results, which are obtained from computer simulation, verifies that the proposed scheme achieves enhanced robustness against various attacks performed. Moreover, the performance of the proposed scheme is compared with the other existing schemes and the results of comparison confirm that our proposed scheme outperforms previous existing schemes in terms of robustness and imperceptibility.
Abstract-Designing an efficient watermarking scheme that can achieve better robustness with limited visual quality distortion is the most challenging problem. In this paper, robust digital image watermarking scheme based on edge detection and singular value decomposition (SVD) is proposed. Two sub-images, which are used as a point of reference for both watermark embedding and extracting, are formed from blocks that are selected based on the number of edges they have. Block based SVD is performed on sub-images to embed a binary watermark by modifying the singular value (S). A population-based stochastic optimization technique is employed to achieve enhanced performance by searching embedding parameters which can maintain a better trade-off between robustness and imperceptibility. The experimental results show that the proposed method achieves improved robustness against different image processing and geometric attacks for selected quality threshold. The performance of the proposed scheme is compared with the existing schemes and significant improvement is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.