Background Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a pandemic by the World Health Organization, and the identification of effective therapeutic strategy is a need of the hour to combat SARS-CoV-2 infection. In this scenario, the drug repurposing approach is widely used for the rapid identification of potential drugs against SARS-CoV-2, considering viral and host factors. Methods We adopted a host transcriptome-based drug repurposing strategy utilizing the publicly available high throughput gene expression data on SARS-CoV-2 and other respiratory infection viruses. Based on the consistency in expression status of host factors in different cell types and previous evidence reported in the literature, pro-viral factors of SARS-CoV-2 identified and subject to drug repurposing analysis based on DrugBank and Connectivity Map (CMap) using the web tool, CLUE. Results The upregulated pro-viral factors such as TYMP, PTGS2, C1S, CFB, IFI44, XAF1, CXCL2, and CXCL3 were identified in early infection models of SARS-CoV-2. By further analysis of the drug-perturbed expression profiles in the connectivity map, 27 drugs that can reverse the expression of pro-viral factors were identified, and importantly, twelve of them reported to have anti-viral activity. The direct inhibition of the PTGS2 gene product can be considered as another therapeutic strategy for SARS-CoV-2 infection and could suggest six approved PTGS2 inhibitor drugs for the treatment of COVID-19. The computational study could propose candidate repurposable drugs against COVID-19, and further experimental studies are required for validation.
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Motivation Inter-organ/inter-tissue communication is central to multi-cellular organisms including humans, and mapping inter-tissue interactions can advance system-level whole-body modeling efforts. Large volumes of biomedical literature have fostered studies that map within-tissue or tissue-agnostic interactions, but literature mining studies that infer inter-tissue relations such as between hormones and genes are solely missing. Results We present a first study to predict from biomedical literature the hormone-gene associations mediating inter-tissue signaling in the human body. Our BioEmbedS* models use neural network based Biomedical word Embeddings with a Support Vector Machine classifier to predict if a hormone-gene pair is associated or not, and whether an associated gene is involved in the hormone's production or response. Model training relies on our unified dataset HGv1 (Hormone-Gene version 1) of ground-truth associations between genes and endocrine hormones, which we compiled and carefully balanced in the embedded space to handle data disparities such as between poorly- vs. well-studied hormones. Our BioEmbedS model recapitulates known gene mediators of tissue-tissue signaling with 70.4% accuracy; predicts novel inter-tissue communication genes in humans which are enriched for hormone-related disorders; and generalizes well to mouse, thereby holding promise for its extension to other multi-cellular organisms as well. Availability Freely available at https://cross-tissue-signaling.herokuapp.com are our model predictions & datasets; https://github.com/BIRDSgroup/BioEmbedS has all relevant code. Supplemental Information Supplementary information available at Bioinformatics online.
MotivationLarge volumes of biomedical literature present an opportunity to build whole-body human models comprising both within-tissue and across-tissue interactions among genes. Current studies have mostly focused on identifying within-tissue or tissue-agnostic associations, with a heavy emphasis on associations among disease, genes and drugs. Literature mining studies that extract relations pertaining to inter-tissue communication, such as between genes and hormones, are solely missing.ResultsWe present here a first study to identify from literature the genes involved in inter-tissue signaling via a hormone in the human body. Our models BioEmbedS and BioEmbedS-TS respectively predict if a hormone-gene pair is associated or not, and whether an associated gene is involved in the hormone’s production or response. Our models are classifiers trained on word embeddings that we had carefully balanced across different strata of the training data such as across production vs. response genes of a hormone (or) well-studied vs. poorly-represented hormones in the literature. Model training and evaluation are enabled by a unified dataset called HGv1 of ground-truth associations between genes and known endocrine hormones that we had compiled. Our models not only recapitulate known gene mediators of tissue-tissue signaling (e.g., at average 70.4% accuracy for BioEmbedS), but also predicts novel genes involved in inter-tissue communication in humans. Furthermore, the species-agnostic nature of our ground-truth HGv1 data and our predictive modeling approach, demonstrated concretely using human data and generalized to mouse, hold much promise for future work on elucidating inter-tissue signaling in other multi-cellular organisms.AvailabilityProposed HGv1 dataset along with our models’ predictions, and the associated code to reproduce this work are available respectively at https://cross-tissue-signaling.herokuapp.com/, and https://github.com/BIRDSgroup/BioEmbedS.Contactnmanik@cse.iitm.ac.in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.