, otherwise known as the coronavirus, has precipitated the world into a pandemic that has infected, as of the time of writing, more than 10 million persons worldwide and caused the death of more than 500,000 persons. Early symptoms of the virus include trouble breathing, fever and fatigue and over 60% of people experience a dry cough. Due to the devastating impact of COVID-19 and the tragic loss of lives, it is of the utmost urgency to develop methods for the early detection of the disease that may help limit its spread as well as aid in the development of targeted solutions. Coughs and other vocal sounds contain pulmonary health information that can be used for diagnostic purposes, and recent studies in chaotic dynamics have shown that nonlinear phenomena exist in vocal signals. The present work investigates the use of symbolic recurrence quantification measures with MFCC features for the automatic detection of COVID-19 in cough sounds of healthy and sick individuals. Our performance evaluation reveals that our symbolic dynamics measures capture the complex dynamics in the vocal sounds and are highly effective at discriminating sick and healthy coughs. We apply our method to sustained vowel 'ah' recordings, and show that our model is robust for the detection of the disease in sustained vowel utterances as well. Furthermore, we introduce a robust novel method of informative undersampling using information rate to deal with the imbalance in our dataset, due to the unavailability of an equal number of sick and healthy recordings. The proposed model achieves a mean classification performance of 97% and 99%, and a mean F 1 -score of 91% and 89% after optimization, for coughs and sustained vowels, respectively.
Co-creativity in music refers to two or more musicians or musical agents interacting with one another by composing or improvising music. However, this is a very subjective process and each musician has their own preference as to which improvisation is better for some context. In this paper, we aim to create a measure based on total information flow to quantitatively evaluate the co-creativity process in music. In other words, our measure is an indication of how "good" a creative musical process is. Our main hypothesis is that a good musical creation would maximize information flow between the participants captured by music voices recorded in separate tracks. We propose a method to compute the information flow using pre-trained generative models as entropy estimators. We demonstrate how our method matches with human perception using a qualitative study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.