SummaryThe monoclonal antibody (mAb) rituximab produces objective clinical responses in patients with B-cell non-Hodgkin's lymphoma and antibodybased autoimmune diseases. Mechanisms mediating B-cell depletion by rituximab are not completely understood and may include direct effects of signalling via the target antigen CD20. Like most but not all CD20 mAbs, rituximab induces a sharp change in the solubility of the CD20 protein in the non-ionic detergent Triton-X-100, reflecting a dramatic increase in the innate affinity of CD20 for membrane raft signalling domains. Apoptosis induced by rituximab hypercrosslinking has been shown to require src family kinases (SFK), which are enriched in rafts. In this report we provide experimental evidence that SFK-dependent apoptotic signals induced by rituximab are raft dependent. Cholesterol depletion prevented the association of hypercrosslinked CD20 with detergent-insoluble rafts, and attenuated both calcium mobilization and apoptosis induced with rituximab. CD20 cocapped with the raft-associated transmembrane adaptor LAB/NTAL after hypercrosslinking with CD20 mAbs, regardless of their ability to induce a change in the affinity of CD20 for rafts. Taken together, the data demonstrate that CD20 hypercrosslinking via rituximab activates SFKs and downstream signalling events by clustering membrane rafts in which antibody-bound CD20 is localized in a high-affinity configuration.
The MS4A gene family in humans includes CD20 and at least 15 other genes. CD20 exists as homo-oligomers in the plasma membrane, however different MS4A proteins expressed in the same cell may hetero-oligomerize. Given the importance of CD20 in B-cell function and as a therapeutic target, we sought to explore the potential for CD20 hetero-oligomerization with other MS4A proteins. We investigated expression in primary human B-cells of the four MS4A genes previously shown to be expressed in human B-cell lines (MS4A4A, MS4A6A, MS4A7, MS4A8B), as well as two genes comprising the closely related TMEM176 gene family, with a view to identifying candidates for future investigation at the protein level. TMEM176A and TMEM176B transcripts were either not detected, or were detected at relatively low levels in a minority of donor B-cell samples. MS4A4A and MS4A8B transcripts were not detected in any normal B-cell sample. MS4A6A and MS4A7 transcripts were detected at low levels in most samples, however the corresponding proteins were not at the plasma membrane when expressed as GFP conjugates in BJAB cells. We also examined expression of these genes in chronic lymphocytic leukemia (CLL), and found that it was similar to normal B-cells with two exceptions. First, whereas MS4A4A expression was undetected in normal B-cells, it was expressed in 1/14 CLL samples. Second, compared to expression levels in normal B-cells, MS4A6A transcripts were elevated in 4/14 CLL samples. In summary, none of the MS4A/TMEM176 genes tested was expressed at high levels in normal or in most CLL B-cells. MS4A6A and MS4A7 were expressed at low levels in most B-cell samples, however the corresponding proteins may not be positioned at the plasma membrane. Altogether, these data suggest that CD20 normally does not form hetero-oligomers with other MS4A proteins and that there are unlikely to be other MS4A proteins in CLL that might provide useful alternate therapeutic targets.
Linker for activation of B cell (LAB)/non-T cell activation linker (NTAL) and phosphoprotein associated with glycophospholipid-enriched membrane microdomain (PAG)/Csk-binding protein (Cbp) are raft-associated transmembrane adaptor proteins with distinct functions in immediate/early phases of receptor signaling pathways. Heterogeneous rafts are thought to compartmentalize membrane-associated signaling events. In order to investigate the subcellular localization of LAB/NTAL and PAG/Cbp, they were expressed as fluorescent chimeric fusion proteins in a human B cell line and their distribution was examined, along with the corresponding endogenous proteins, before and after B cell receptor (BCR) stimulation. Both adaptors were distributed predominantly at the plasma membrane in resting cells and co-clustered with other raft-associated proteins; however, they distributed differently in buoyant membranes isolated by either detergent resistance or non-detergent methods, indicating that they might localize to distinct rafts. After activation, LAB/NTAL was internalized and co-localized with the BCR while PAG/Cbp remained on the cell surface. BCR internalization was reduced in LAB/NTAL-deficient murine B cells, suggesting a regulatory role for LAB/NTAL in activation-induced internalization of the BCR. The cytoplasmic domain of LAB/NTAL, and not the transmembrane/juxtamembrane region, was found to be essential for its internalization.
Background: Human tonsils are a rich source of B lymphocytes exhibiting a variety of phenotypes and activation states. Existing methods of purification are time consuming or costly. The aim of the present study was to optimize conditions to isolate large numbers of highly purified primary B lymphocytes from tonsils in a short and cost-effective single step, using a commercially available reagent designed for purifying cells from whole blood (RosetteSep). This technique relies on the presence of the large excess of red blood cells in whole blood for the formation of immunorosettes, whereas single cell suspensions from tonsils contain relatively few red blood cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.