SUMMARYThe gulf toadfish (Opsanus beta) is a facultatively ureotelic fish that excretes primarily urea under conditions of crowding or confinement. To examine the relationship between ammonia production, urea production and the ornithine-urea cycle (O-UC) enzyme activity and mRNA expression, we subjected toadfish to two-day and seven-day crowding regimes. Plasma cortisol levels were measured and liver tissue was assayed for ammonia and urea concentrations. Liver glutamine synthetase (GS), carbamoyl phosphate synthetase III (CPS), ornithine carbamoyl transferase (OCT) and arginase (ARG) activities were also measured. Quantitative PCR was utilized to determine liver GS, CPS, OCT, ARG, argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) mRNA expression. Hepatic ammonia concentrations decreased with increased duration of crowding whereas liver urea and circulating cortisol levels increased. An elevation in enzyme activity with increased duration of crowding was observed for all four O-UC enzymes examined. By contrast, mRNA expression was variable for the O-UC enzymes and only CPS and ASS had mRNA expression levels that were elevated in crowded fish. These results suggest that the activities of O-UC enzymes are better predictors for urea production than O-UC enzyme mRNA expression levels.
The sequence of carbamoyl phosphate synthetase I (CPSase I) cDNA and expression of the enzyme in liver of the toad Xenopus laevis are reported. CPSase I mRNA increases 6-fold when toads are exposed to high salinity for extended periods of time. The deduced 1,494-amino acid sequence of the CPSase I is homologous to other CPSases and reveals a domain structure and conserved amino acids common to other CPSases. A serine residue (S287) is present where there is a cysteine residue required for glutamine-dependent activity in CPSase Types III and II (Type I CPSases utilize only ammonia as nitrogen-donating substrate). A sequence of DNA 964 bases upstream from the ATG start codon for the CPSase I gene is also reported. Phylogenetic analysis for 30 CPSase isoforms, including X. laevis CPSase I, across a wide spectrum of phyla is reported and discussed. The results are consistent with the views that eukaryotic CPSase II as a multifunctional complex evolved from prokaryotic CPSase II and that CPSase I in terrestrial vertebrates and CPSase III in fishes arose from eukaryotic CPSase II by independent events after the divergence of plants in eukaryotic evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.