Unhealthy eating is the leading risk for death and disability globally. As a result, the World Health Organization (WHO) has called for population health interventions. One of the proposed interventions is to ensure healthy foods are available by implementing healthy food procurement policies. The objective of this systematic review was to evaluate the evidence base assessing the impact of such policies. A comprehensive review was conducted by searching PubMed and Medline for policies that had been implemented and evaluated the impact of food purchases, food consumption, and behaviors towards healthy foods. Thirty-four studies were identified and found to be effective at increasing the availability and purchases of healthy food and decreasing purchases of unhealthy food. Most policies also had other components such as education, price reductions, and health interventions. The multiple gaps in research identified by this review suggest that additional research and ongoing evaluation of food procurement programs is required. Implementation of healthy food procurement policies in schools, worksites, hospitals, care homes, correctional facilities, government institutions, and remote communities increase markers of healthy eating. Prior or simultaneous implementation of ancillary education about healthy eating, and rationale for the policy may be critical success factors and additional research is needed.
Cancer as a large group of complex diseases is believed to result from the interactions of numerous genetic and environmental factors but may develop in people without any known genetic or environmental risks, suggesting the existence of other powerful factors to influence the carcinogenesis process. Much attention has been focused recently on particular members of the intestinal microbiota for their potential roles in promoting carcinogenesis. Here we report the identification and characterization of intestinal bacteria that exhibited potent anti-malignancy activities on a broad range of solid cancers and leukemia. We collected fecal specimens from healthy individuals of different age groups (preschool children and university students), inspected their effects on cancer cells, and obtained bacteria with potent anti-malignancy activities. The bacteria mostly belonged to Actinobacteria but also included lineages of other phyla such as Proteobacteria and Firmicutes. In animal cancer models, sterile culture supernatant from the bacteria highly effectively inhibited tumor growth. Remarkably, intra-tumor administration of the bacterial products prevented metastasis and even cleared cancer cells at remote locations from the tumor site. This work demonstrates the prevalent existence of potent malignancy-killers in the human intestinal microbiota, which may routinely clear malignant cells from the body before they form cancers.
Sepsis, a pathology resulting from excessive inflammatory response that leads to multiple organ failure, is a major cause of mortality in intensive care units. Macrophages play an important role in the pathophysiology of sepsis. Accumulating evidence has suggested an upregulated rate of aerobic glycolysis as a key common feature of activated proinflammatory macrophages. Here, we identified a crucial role of myeloid 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3), a glycolytic activator in lipopolysaccharide (LPS)-induced endotoxemia in mice. Pfkfb3 expression is substantially increased in bone marrow derived macrophages (BMDMs) treated with LPS in vitro and in lung macrophages of mice challenged with LPS in vivo. Myeloid-specific knockout of Pfkfb3 in mice protects against LPS-induced lung edema, cardiac dysfunction and hypotension, which were associated with decreased expression of interleukin 1 beta (Il1b), interleukin 6 (Il6) and nitric oxide synthase 2 (Nos2), as well as reduced infiltration of neutrophils and macrophages in lung tissue. Pfkfb3 ablation in cultured macrophages attenuated LPS-induced glycolytic flux, resulting in a decrease in proinflammatory gene expression. Mechanistically, Pfkfb3 ablation or inhibition with a Pfkfb3 inhibitor AZ26 suppresses LPS-induced proinflammatory gene expression via the NF-κB signaling pathway. In summary, our study reveals the critical role of Pfkfb3 in LPS-induced sepsis via reprogramming macrophage metabolism and regulating proinflammatory gene expression. Therefore, PFKFB3 is a potential target for the prevention and treatment of inflammatory diseases such as sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.