Eukaryotic ribosomes assemble by association of ribosomal RNA with ribosomal proteins into nuclear precursor particles, which undergo a complex maturation pathway coordinated by non-ribosomal assembly factors. Here, we provide functional insights into how successive structural re-arrangements in ribosomal protein S3 promote maturation of the 40S ribosomal subunit. We show that S3 dimerizes and is imported into the nucleus with its N-domain in a rotated conformation and associated with the chaperone Yar1. Initial assembly of S3 with 40S precursors occurs via its C-domain, while the N-domain protrudes from the 40S surface. Yar1 is replaced by the assembly factor Ltv1, thereby fixing the S3 N-domain in the rotated orientation and preventing its 40S association. Finally, Ltv1 release, triggered by phosphorylation, and flipping of the S3 N-domain into its final position results in the stable integration of S3. Such a stepwise assembly may represent a new paradigm for the incorporation of ribosomal proteins.
Background: Because of their biochemical properties, newly synthesized ribosomal proteins are prone to aggregation. Results: Yar1 directly interacts with free Rps3, accompanies it from the cytoplasm to the nucleus and maintains its solubility. Conclusion: Yar1 acts as an anti-aggregation factor for Rps3. Significance: Ribosomal proteins require protection from aggregation.
The emergence of a new strain of coronavirus in late 2019, SARS-CoV-2, led to a global pandemic in 2020. This may have been preventable if large scale, rapid diagnosis of active cases had been possible, and this has highlighted the need for more effective and efficient ways of detecting and managing viral infections. In this work, we investigate three different optical techniques for quantifying the binding of recombinant SARS-CoV-2 spike protein to surface-immobilized oligonucleotide aptamers. Biolayer interferometry is a relatively cheap, robust, and rapid method that only requires very small sample volumes. However, its detection limit of 250 nM means that it is not sensitive enough to detect antigen proteins at physiologically relevant levels (sub-pM). Surface plasmon resonance is a more sensitive technique but requires larger sample volumes, takes longer, requires more expensive instrumentation, and only reduces the detection limit to 5 nM. Surface-enhanced Raman spectroscopy is far more sensitive, enabling detection of spike protein to sub-picomolar concentrations. Control experiments performed using scrambled aptamers and using bovine serum albumin as an analyte show that this apta-sensing approach is both sensitive and selective, with no appreciable response observed for any controls. Overall, these proof-of-principle results demonstrate that SERS-based aptasensors hold great promise for development into rapid, point-of-use antigen detection systems, enabling mass testing without any need for reagents or laboratory expertise and equipment.
Menaquinone (vitamin K2) plays a vital role in energy generation and environmental adaptation in many bacteria, including the human pathogen Mycobacterium tuberculosis (Mtb). Although menaquinone levels are known to be tightly linked to the cellular redox/energy status of the cell, the regulatory mechanisms underpinning this phenomenon are unclear. The first committed step in menaquinone biosynthesis is catalyzed by MenD, a thiamine diphosphate–dependent enzyme comprising three domains. Domains I and III form the MenD active site, but no function has yet been ascribed to domain II. Here, we show that the last cytosolic metabolite in the menaquinone biosynthesis pathway, 1,4-dihydroxy-2-naphthoic acid (DHNA), binds to domain II of Mtb-MenD and inhibits its activity. Using X-ray crystallography of four apo- and cofactor-bound Mtb-MenD structures, along with several spectroscopy assays, we identified three arginine residues (Arg-97, Arg-277, and Arg-303) that are important for both enzyme activity and the feedback inhibition by DHNA. Among these residues, Arg-277 appeared to be particularly important for signal propagation from the allosteric site to the active site. This is the first evidence of feedback regulation of the menaquinone biosynthesis pathway in bacteria, identifying a protein-level regulatory mechanism that controls menaquinone levels within the cell and may therefore represent a good target for disrupting menaquinone biosynthesis in M. tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.