Vegetation restoration on slopes is generally difficult, especially in high altitude areas since the environment has dramatically changing weather conditions that are not suitable for plant growth. In this study, the potential of film mulching for vegetation restoration in such environments and plant growth and nutrients in artificial soil on slopes in high altitude areas were determined. Experiments were carried out in Jiuzhaigou County, Sichuan Province, to determine plant growth and nutrients in artificial soil on slopes under six different coverage rates (40%, 50%, 60%, 70%, 80% and 90%). Results showed that in each observation period, plant height, ground diameter and contents of EN, EP and EK in the soil of the film mulching treatment were significantly higher than those of the control, while the number of plant individuals per unit area was significantly lower than that of the control. When the coverage rate was 90%, plant height, ground diameter, biomass and nutrient contents in the soil were all higher than those under the other five treatments. Overall, our study suggested that applying film mulching technology when performing vegetation restoration on slopes in high altitude areas is promising, since it can promote plant growth and preserve soil fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.