BackgroundThe major cancer related mortality is caused by metastasis and invasion. It is important to identify genes regulating metastasis and invasion in order to curtail metastatic spread of cancer cells.MethodsThis study investigated the association between RUNX2 and miR-10a/miR-10b and the risk of breast cancer relapse. Expression levels of RUNX2 and miR-10a/b in108 pairs of tumor and non-tumor tissue of breast cancer were assayed by quantitative PCR analysis and evaluated for their prognostic implications.ResultsThe median expression levels of RUNX2 and miR-10b in tumor tissue normalized using adjacent non-tumor tissue were significantly higher in relapsed patients than in relapse-free patients. Higher expression of these three genes were significantly correlated with the hazard ratio for breast cancer recurrence (RUNX2: 3.02, 95% CI = 1.50 ~ 6.07; miR-10a: 2.31, 95% CI = 1.00 ~ 5.32; miR-10b: 3.96, 95% CI = 1.21 ~ 12.98). The joint effect of higher expression of all three genes was associated with a hazard ratio of 12.37 (95% CI = 1.62 ~ 94.55) for relapse. In a breast cancer cell line, RUNX2 silencing reduced the expression of miR-10a/b and also impaired cell motility, while RUNX2 overexpression elicited opposite effects.ConclusionsThese findings indicate that higher expression of RUNX2 and miR-10a/b was associated with adverse outcome of breast cancer. Expression levels of RUNX2 and miR-10a/b individually or jointly are potential prognostic factors for predicting breast cancer recurrence. Data from in vitro studies support the notion that RUNX2 promoted cell motility by upregulating miR-10a/b.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-014-0257-3) contains supplementary material, which is available to authorized users.
BackgroundCell-free circulating DNA (cfDNA) is becoming a useful biopsy for noninvasive diagnosis of diseases. Microbial sequences in plasma cfDNA may provide important information to improve prognosis and treatment. We have developed a stringent method to identify microbial species via microbial cfDNA in the blood plasma of early-onset breast cancer (EOBC) patients and healthy females. Empirically, microbe-originated sequence reads were identified by mapping non-human PE reads in cfDNA libraries to microbial databases. Those mapped concordantly to unique microbial species were assembled into contigs, which were subsequently aligned to the same databases. Microbial species uniquely aligned were identified and compared across all individuals on MCRPM (Microbial CfDNA Reads Per Million quality PE reads) basis.ResultsThe predominant microbial cfDNAs in all plasma samples examined are originated from bacteria and these bacteria were limited to only a few genera. Among those, Acinetobacter johnsonii XBB1 and low levels of Mycobacterium spp. were commonly found in all healthy females, but also present in an EOBC patient. Compared to those in healthy counterparts, bacterial species in EOBC patients are more diverse and more likely to present at high levels. Among these three EOBC patients tested, a patient who has record high titer (2,724 MCRPM) of Pseudomonas mendocina together with 8.82 MCRPM of Pannonibacter phragmitetus has passed away; another patient infected by multiple Sphingomonas species remains alive; while the third patient who has similar microbial species (Acinetobacter johnsonii XBB1) commonly seen in normal controls is having a normal life.ConclusionsOur preliminary data on the profiles of microbial cfDNA sequences suggested that it may have some prognostic value in cancer patients. Validation in larger number of patients is warranted.
Altered glycosylations, which are associated with expression and activities of glycosyltransferases, can dramatically affect the function of glycoproteins and modify the behavior of tumor cells. ST3GAL1 is a sialyltransferase that adds sialic acid to core 1 glycans, thereby terminating glycan chain extension. In breast carcinomas, overexpression of ST3GAL1 promotes tumorigenesis and correlates with increased tumor grade. In pursuing the role of ST3GAL1 in breast cancer using ST3GAL1-siRNA to knockdown ST3GAL1, we identified CD55 to be one of the potential target proteins of ST3GAL1. CD55 is an important complement regulatory protein, preventing cells from complement-mediated cytotoxicity. CD55 had one N-linked glycosylation site in addition to a Ser/Thr-rich domain, which was expected to be heavily O-glycosylated. Detailed analyses of N- and O-linked oligosaccharides of CD55 released from scramble or ST3GAL1 siRNA–treated breast cancer cells by tandem mass spectrometry revealed that the N-glycan profile was not affected by ST3GAL1 silencing. The O-glycan profile of CD55 demonstrated a shift in abundance to nonsialylated core 1 and monosialylated core 2 at the expense of the disialylated core 2 structure after ST3GAL1 silencing. We also demonstrated that O-linked desialylation of CD55 by ST3GAL1 silencing resulted in increased C3 deposition and complement-mediated lysis of breast cancer cells and enhanced sensitivity to antibody-dependent cell-mediated cytotoxicity. These data demonstrated that ST3GAL1-mediated O-linked sialylation of CD55 acts like an immune checkpoint molecule for cancer cells to evade immune attack and that inhibition of ST3GAL1 is a potential strategy to block CD55-mediated immune evasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.