Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker's yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301(TPS1) overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301(TPS1) were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301(TPS1) was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker's yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker's yeast.
BACKGROUND: Angiotensin-converting enzyme (ACE) inhibitory peptides are potential alternatives to the synthetic ACE inhibitory drugs, but the in vivo antihypertensive effects of most of them have not been confirmed. The tripeptide Leu-Pro-Pro (LPP) is one of the few peptides that have been proved clinically effective in reducing the blood pressure of hypertensive patients and casein is currently its major source. LPP is contained in multiple fractions of zein, and corn gluten meal (CGM) is hence a potential new source of LPP. For this purpose, CGM was fermented with a Lactobacillus helveticus strain and the medium composition was optimized; the decoloration of the resultant hydrolysate was investigated as well.RESULTS: LPP could be successfully released from CGM by fermentation with the strain Lactobacillus helveticus CICC 22536. The highest LPP content and protein recovery of 561 mg kg −1 and 14.92% occurred in the medium containing 20 g L −1 glucose, 15 g L −1 beef extract, 60 g L −1 CGM, 10 g L −1 CaCO 3 , 0.5 g L −1 NaCl, and inoculation amount 6%. The supplementation of Fla-vourzyme® further improved the two parameters to 662 mg kg −1 and 36.94%, respectively. The permeate of the hydrolysate after ultrafiltration through a 5 kDa membrane could be effectively decolored by the macroporous resin XAD-16 without notable protein loss, and its LPP content was further boosted to 743 mg kg −1 .CONCLUSION: CGM is a potential new source of LPP and its ultrafiltered and decolored hydrolysate could be used to develop new antihypertensive functional foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.