Background: FSP27 depletion increases both basal and stimulated lipolysis. Results: FSP27 interacts with ATGL via amino acids 120 -220 to regulate lipolysis and triglyceride storage in human adipocytes. Conclusion: FSP27 inhibits ATGL-mediated lipolysis and protects adipocytes against free fatty acid-impaired insulin signaling. Significance: The novel lipolytic regulation shown here may lead to new treatments for insulin resistance.
Human adipocytes express high levels of two distinct lipid droplet proteins, Fat Specific Protein 27 (FSP27; also called CIDEC), a member of the CIDE family, and perilipin1 (PLIN1), a member of the PAT family. Both proteins play a role in fat metabolism in adipocytes, but how they interact is not known. Our present study demonstrates that FSP27 and PLIN1 co-localize and interact in cultured human primary adipocytes. We also found that the C-terminal domain of FSP27, aa 120–220, interacts with PLIN1. Individual expression of exogenous FSP27 or PLIN1 increased triglyceride content and decreased glycerol release (a measure of lipolysis), but co-expression of both proteins did not further increase triglyceride content or decrease lipolysis in human adipocytes. However, the combination of PLIN1 and FSP27 increased the average size of lipid droplets or caused the formation of unilocular adipocytes. Our data suggest that FSP27 interacts with PLIN1 to regulate lipid droplet size in human adipocytes in a concerted manner.
BCAT1 plays a pathogenic role in HCC by causing cell proliferation and chemoresistance. The MYC transcription factor is involved in regulating the transcriptional activity of BCAT1. BCAT1 expression has prognostic significance for the survival of patients with HCC.
The therapeutic potential of baicalein against hepatoma cells was evaluated in vitro and in vivo. In cell viability assays, baicalein showed significant cytotoxicity against the hepatocellular carcinoma cell lines H22, Bel-7404, and Hep G2 and moderate cytotoxicity against immortalized human hepatocytes. Baicalein induced G0/G1-phase arrest in hepatocellular carcinoma cells, inhibited AKT, and promoted the degradation of β-catenin and cyclin D1 without activation of GSK-3β. Furthermore, baicalein significantly inhibited H22 xenograft tumor growth without causing obvious adverse effects on weight or liver and spleen weight indexes in ICR mice. Immunohistochemical analysis showed that the inhibition of tumor growth in baicalein-treated mice was associated with decreased AKT, β-catenin, and cyclin D1 expression ex vivo. Our data indicate that baicalein might regulate cyclin D1 transcription via a β-catenin-dependent mechanism, leading to cell cycle arrest at G0/G1 phase and impaired cancer cell proliferation. These results suggest that baicalein is a potential candidate for the treatment of hepatocellular carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.