Compared with the traditional actuator of machinery and electricity, the piezoelectric actuator has the advantages of a compact structure, small volume, no mechanical friction, athermancy and no electromagnetic interference. Therefore, it has high application value in the fields of MEMS, bioengineering, medical science and so on. This article draws conclusions from the influence of multiple piezoelectric effects on the physical parameters (dielectric coefficient, equivalent capacity, energy conversion and piezoelectric coefficient) of piezoelectric actuators. These data from theoretical and experimental research show the following: (1) The rate between the dielectric coefficient of piezoelectric in mechanical freedom and clamping is obtained from the secondary direct piezoelectric effect, which enhances the dielectric property, increases the dielectric coefficient and decreases the coefficient of dielectric isolation; (2) Under external field, En(ex)=E1, exterior stress T = 0, that is to say, under the boundary condition of mechanical freedom, piezoelectric can store electric energy and elasticity, which obtains power density, elastic density and an electromechanical coupling factor; (3) According to the piezoelectric strain Si(1), piezoelectric displacement Dm(2) and piezoelectric strain Si(3) of multiple piezoelectric effects, when the dielectric coefficient of the first converse piezoelectric effect ε33 is 1326 and the dielectric coefficient of the secondary direct piezoelectric effect increases to 3336, the dielectric coefficient of the ceramic chip increases. When the piezoelectric coefficient of the first converse piezoelectric effect d33 is 595 and the piezoelectric coefficient of the secondary direct piezoelectric effect decreases to 240, the piezoelectric coefficient of the ceramic chip will decrease. It is of major significance both in the applications and in basic theory to research the influence of multiple piezoelectric effects on the physical parameters of piezoelectric actuators. On the one hand, this can further increase the control precision of piezoelectric actuators. On the other hand, it can be applied to research on the physical parameters and self-sensing actuators, like piezoelectric quartz and piezoelectric ceramic self-sensing actuators, which will be of great service for MEMS.
In this paper, there is much demand for more advanced inhaled drug treatment on respiratory diseases treatment, so we design and manufacture a kind of medical micro atomization device based on piezoelectric actuators. In the experiment, the first measuring method we used is the diameter of the fog particles compare with quartz round bead in 1 micron. The second measuring method is weighing bibulous desiccant. The experimental results show that the fog particles produced by micro atomization device is 3 ∼ 4 microns in diameter, and fog particles rate is 0.07 ∼ 0.08 g/min. These data basically meets medical micro atomization device design requirements for the diameter and flow rate of fog particles on respiratory diseases treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.