The global demand for energy has been steadily increasing due to population growth, urbanization, and industrialization. Numerous researchers worldwide are striving to create precise forecasting models for predicting energy consumption to manage supply and demand effectively. In this research, a time-series forecasting model based on multivariate multilayered long short-term memory (LSTM) is proposed for forecasting energy consumption and tested using data obtained from commercial buildings in Melbourne, Australia: the Advanced Technologies Center, Advanced Manufacturing and Design Center, and Knox Innovation, Opportunity, and Sustainability Center buildings. This research specifically identifies the best forecasting method for subtropical conditions and evaluates its performance by comparing it with the most commonly used methods at present, including LSTM, bidirectional LSTM, and linear regression. The proposed multivariate, multilayered LSTM model was assessed by comparing mean average error (MAE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE) values with and without labeled time. Results indicate that the proposed model exhibits optimal performance with improved precision and accuracy. Specifically, the proposed LSTM model achieved a decrease in MAE of 30%, RMSE of 25%, and MAPE of 20% compared with the LSTM method. Moreover, it outperformed the bidirectional LSTM method with a reduction in MAE of 10%, RMSE of 20%, and MAPE of 18%. Furthermore, the proposed model surpassed linear regression with a decrease in MAE by 2%, RMSE by 7%, and MAPE by 10%.These findings highlight the significant performance increase achieved by the proposed multivariate multilayered LSTM model in energy consumption forecasting.
The global demand for energy has been steadily increasing due to population growth, urbanization, and industrialization. Numerous researchers worldwide are striving to create precise forecasting models for predicting energy consumption to manage supply and demand effectively. In this research, a time-series forecasting model based on multivariate multilayered long short-term memory (LSTM) is proposed for forecasting energy consumption and tested using data obtained from commercial buildings in Melbourne, Australia: the Advanced Technologies Center, Advanced Manufacturing and Design Center, and Knox Innovation, Opportunity, and Sustainability Center buildings. This research specifically identifies the best forecasting method for subtropical conditions and evaluates its performance by comparing it with the most used methods at present, including LSTM, bidirectional LSTM, and linear regression. The proposed multivariate multilayered LSTM model was assessed by comparing mean average error (MAE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE) values with and without labeled time. Results indicate that the proposed model exhibits optimal performance with improved precision and accuracy. Specifically, the proposed LSTM model achieved a decrease in MAE by 30%, RMSE by 25%, and MAPE by 20% compared to the LSTM method. Moreover, it outperformed the bidirectional LSTM method with a reduction in MAE by 10%, RMSE by 20%, and MAPE by 18%. Furthermore, the proposed model surpassed linear regression with a decrease in MAE by 2%, RMSE by 7%, and MAPE by 10%. These findings highlight the significant performance increase achieved by the proposed multivariate multilayered LSTM model in energy consumption forecasting.
The Covid-19 pandemic and the subsequent implementation of lockdown measures have significantly impacted global electricity consumption, necessitating accurate energy consumption forecasts for optimal energy generation and distribution during a pandemic. In this study, we propose a new forecasting model called the Multivariate Multilayered LSTM with Covid-19 case injection ($\proposedModel$) for improved energy forecast during the next occurrence of a similar pandemic. We utilize data from commercial buildings in Melbourne, Australia during the Covid-19 pandemic to predict energy consumption and evaluate the model's performance against commonly used methods such as LSTM, Bi-LSTM, Linear Regression, Support Vector Machine and the previously published work of Multilayered LSTM (M-LSTM). The proposed forecasting model was analyzed using the following metrics of mean percent absolute error (MPAE), normalized root mean square error (NRMSE), and $R^2$ score values. The model $\proposedModel$ demonstrates superior performance, achieving the lowest MPAE values of 0.061, 0.093, and 0.158 for data sets from 3 different buildings, respectively. Our results highlight the improved precision and accuracy of the model, providing valuable information for energy management and decision-making during the challenges posed by the occurrence of a pandemic like Covid-19 in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.