International audienceAn air-filled substrate integrated waveguide (SIW) made of a multilayer printed circuit board process is proposed in this paper. It is of particular interest for millimeter-wave applications that generally require low cost and low-loss performance and excellent power-handling capability. This three-layered air-filled SIW allows for substantial loss reduction and power-handling capability enhancement. The top and bottom layers may make use of a low-cost standard substrate such as FR-4 on which baseband or digital circuits can be implemented so to obtain a very compact, high-performance, low-cost, and self-packaged millimeter-wave integrated system. Over Ka-band (U-band), it is shown that the air-filled SIW compared to its dielectric-filled counterparts based on Rogers substrates RT/Duroid 5880 and also 6002 reduces losses by a mean value of 0.068 dB/cm (0.098 dB/cm) and 0.104 dB/cm (0.152 dB/cm), increases average power-handling capability by 8 dB (6 dB) and 7.5 dB (5.7 dB), and quality factor by 2.7 (2.8) and 3.6 (3.8) times, respectively. The peak power-handling capability of the proposed structure is also studied. A wideband transition is presented to facilitate interconnects of the proposed air-filled SIW with dielectric-filled SIW. Design steps of this transition are detailed and its bandwidth limitation due to fabrication tolerances is theoretically examined and established. For validation purposes, a back-to-back transition operating over the Ka-band is fabricated. It achieves a return loss of better than 15 dB and an insertion loss of 0.6 ±0.2 dB ( 0.3 ±0.1 dB for the transition) from 27 to 40 GHz. Finally, two elementary circuits, namely, the T-junction and 90 ° hybrid coupler based on the air-filled SIW, are also demonstrated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.