Changes in structure and function of the auditory system can be produced by experimentally manipulating the sensory environment, and especially dramatic effects result from deprivation procedures. An alternative deprivation strategy utilizes naturally occurring lesions. The congenitally deaf white cat represents an animal model of sensory deprivation because it mimics a form of human deafness called the Scheibe deformity and permits studies of how central neurons react to early-onset cochlear degeneration. We studied the synaptic characteristics of the endbulb of Held, a prominent auditory nerve terminal in the cochlear nucleus. Endbulbs arise from the ascending branch of the auditory nerve fiber and contact the cell body of spherical bushy cells. After 6 months, endbulbs of deaf white cats exhibit alterations in structure that are clearly distinguishable from those of normal hearing cats, including a diminution in terminal branching, a reduction in synaptic vesicle density, structural abnormalities in mitochondria, thickening of the pre- and postsynaptic densities, and enlargement of synapse size. The hypertrophied membrane densities are suggestive of a compensatory response to diminished transmitter release. These data reveal that early-onset, long-term deafness produces unambiguous alterations in synaptic structure and may be relevant to rehabilitation strategies that promote aural/oral communication.
Cell replacement strategies for degenerative and traumatic diseases of the nervous system depend on the functional integration of grafted cells into host neural circuitry, a condition necessary for the propagation of physiological signals and, perhaps, targeting of trophic support to injured neurons. We have recently shown that human neural stem cell (NSC) grafts ameliorate motor neuron disease in SOD1 transgenic rodents. Here we study structural aspects of integration of neuronally differentiated human NSCs in the motor circuitry of SOD1 G93A rats. Human NSCs were grafted into the lumbar protuberance of 8 week-old SOD1 G93A rats; results were compared to those on control Sprague-Dawley rats. Using pre-embedding immuno-EM, we found human synaptophysin (+) terminals contacting the perikarya and proximal dendrites of host α motor neurons. Synaptophysin (+) terminals had well-formed synaptic vesicles and were associated with membrane specializations primarily in the form of symmetrical synapses. To analyze the anatomy of motor circuits engaging differentiated NSCs, we injected the retrograde transneuronal tracer Bartha-pseudorabies virus (PRV) or the retrograde marker Cholera Toxin B (CTB) into the gastrocnemius muscle/sciatic nerve of SOD1 rats before disease onset and also into control rats. With this tracing, NSC-derived neurons were labeled with PRV but not CTB, a pattern suggesting that PRV entered NSC-derived neurons via transneuronal transfer from host motor neurons but not via direct transport from the host musculature. Our results indicate an advanced degree of structural integration, via functional synapses, of differentiated human NSCs into the segmental motor circuitry of SOD1-G93A rats.
The integration of information across sensory modalities enables sound to be processed in the context of position, movement, and object identity. Inputs to the granule cell domain (GCD) of the cochlear nucleus have been shown to arise from somatosensory brain stem structures, but the nature of the projection from the spinal trigeminal nucleus is unknown. In the present study, we labeled spinal trigeminal neurons projecting to the cochlear nucleus using the retrograde tracer, Fast Blue, and mapped their distribution. In a second set of experiments, we injected the anterograde tracer biotinylated dextran amine into the spinal trigeminal nucleus and studied the resulting anterograde projections with light and electron microscopy. Spinal trigeminal neurons were distributed primarily in pars caudalis and interpolaris and provided inputs to the cochlear nucleus. Their axons gave rise to small (1-3 microm in diameter) en passant swellings and terminal boutons in the GCD and deep layers of the dorsal cochlear nucleus. Less frequently, larger (3-15 microm in diameter) lobulated endings known as mossy fibers were distributed within the GCD. Ventrally placed injections had an additional projection into the anteroventral cochlear nucleus, whereas dorsally placed injections had an additional projection into the posteroventral cochlear nucleus. All endings were filled with round synaptic vesicles and formed asymmetric specializations with postsynaptic targets, implying that they are excitatory in nature. The postsynaptic targets of these terminals included dendrites of granule cells. These projections provide a structural substrate for somatosensory information to influence auditory processing at the earliest level of the central auditory pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.