This paper focuses on the stability of the high-level radioactive waste (HLW) in the proposed clay rock in Tamusu area of China. The in-situ stress as well as the variational characteristics of ambient temperature caused by nuclide decay during HLW storage should be noticeable. A series of thermal property tests and thermo-mechanical coupled strength (T-M) tests of rock samples in the target formation are carried out. Then the stability of surrounding rock of an HLW under the combination of heat release from HLW and in-situ stress is simulated and analyzed by numerical method. Thermal properties of Tamusu clay rock samples are obtained by testing their thermal conductivity. In order to obtain the characteristics and the failure modes of rock samples at different temperatures, the T-M coupling experiments in the temperature range of 100°C are conducted. Numerical model for simulating the state of operation of the nuclear waste tank buried in the tunnel within 100 years is constructed. A thermal boundary by the heat release equation of HLW and the real in-situ stress level in Tamusu area are considered in the model. While, the variation law of surrounding rock’s temperature, stress, and deformation corresponding to the embedding time is obtained from the numerical calculation. Finally, the stability of the deep geological repository is comprehensively evaluated. The results show that the temperature has a significant impact on the T-M coupling characteristics of Tamusu clay rock, and the proposed repository numerical model has no large deformation and failure problems in 100 years. However, the temperature of the surrounding rock of the repository may exceed the safety standard value during the operation period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.