The concept of moving target defense (MTD) is an excellent solution proposed in USA to make the defender become dominant player while the defender is the disadvantage one in the game of defender and attacker. Focus on summarized the attack surface characteristic and functional connotation of moving target defense, according to the hierarchy in the execution stack, this paper classified and analyzed current moving target defense technologies into four categories, such as dynamic communication network, dynamic communication run-time environment, dynamic communication data and dynamic communication application, described the theory of every mechanism in each category, summarized the advantages and disadvantages of each mechanism. On the basis of the study of current mechanisms of moving target defense technologies, this paper designed a moving target defense system based on terminal information hopping and analyzed its anti-attack performance. The experiment result proven that system can effectively increase the time consumption and complexity of successful attack, and decrease successful attack rate by continually shifting the attack surface, our design greatly improved the strength of inactive defense. This study can provide the theoretical guidance for the design and implementation of mutimechanisms moving target defense systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.