Over the past decade, interest in autonomous vessels significantly increased as the technology improved, especially in the automotive industry. Unlike cars, ships travel in a wild environment and maritime lanes are not limited by white lines. This makes the design of fully autonomous vessels even more challenging. Additionally, the need to reduce greenhouse gas emissions led to a renewed interest in wind propulsion. Sailboats have several advantages, such as full energy autonomy and a limited environmental impact. The Microtransat Challenge, which consists of crossing the Atlantic Ocean, is a tremendous test field. This paper describes, within that frame, a design procedure for the development of a robust fully autonomous sailboat to be deployed for long-term missions. In this paper, the mechanical and electronic design strategies are presented. A focus is on reliability and power management. Moreover, a test procedure for validating each design increment is described as well as a path plan that considers the risk of collision and weather routing with wind and currents. The Microtransat remains a challenge that no autonomous ship has ever succeeded (and has been completed by a single unmanned vessel, SB Met in 2018). However, the results by Breizh Tigresse and Sealeon in 2015 and 2018 made a step forward in terms of time and distance. They are presented and analyzed in this work.
In this work, a hardware-in-the-loop (HIL) simulator is designed to diagnose the behavior of an autonomous sailboat as it navigates between waypoints. At its core, the HIL simulator includes the sailboat pilot on an embedded system. The sensor data input to the embedded system is fed by a navigation simulator that takes into account the different forces on the sailboat due to the wind, waves and current conditions. The HIL simulator is then tested for a navigation route from sea trials published in 2014, and the behavior of the automated pilot is compared to its behavior when the vessel is driven by a crew. As demonstrated, the automated system can outperform the man-operated vessel. The tool is also used to diagnose weaknesses in the sailboat autopilot algorithm that can be improved in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.