We present a catalog of 4195 optically confirmed Sunyaev-Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg 2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 < z < 1.91 (median z = 0.52). The catalog contains 222 z > 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M 500c > 3.8 × 10 14 M e , evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2 4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg 2 ), the Hyper Suprime-Cam Subaru Strategic Program (469 deg 2 ), and the Kilo Degree Survey (825 deg 2 ). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and
The properties of galaxy clusters as a function of redshift can be utilized as an important cosmological tool. We present initial results from a program of follow-up observations of the Sunyaev–Zeldovich effect (SZE) in high-redshift galaxy clusters detected by the Massive and Distant Clusters of WISE Survey (MaDCoWS) which uses infrared data from the Wide-field Infrared Survey (WISE) instrument. Using typical on-source integration times of 3–4 hr per cluster, MUSTANG2 on the Green Bank Telescope was able to measure strong detections of SZE decrements and statistically significant masses on 14 out of 16 targets. On the remaining two, weaker (3.7σ) detections of the SZE signal and strong upper limits on the masses were obtained. In this paper we present masses and pressure profiles of each target and outline the data analysis used to recover these quantities. Of the clusters with strong detections, three show significantly flatter pressure profiles while, from the MUSTANG2 data, five others show signs of disruption at their cores. However, outside of the cores of the clusters, we were unable to detect significant amounts of asymmetry. Finally, there are indications that the relationship between optical richness used by MaDCoWS and SZE-inferred mass may be significantly flatter than indicated in previous studies.
Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing (μmux). Simons Observatory will use 49 modules containing 70,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a 95% yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 pA / Hz . This impacts the projected SO mapping speed by <8%, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded.
The Simons Observatory is a ground-based cosmic microwave background experiment that consists of three 0.4 m small-aperture telescopes and one 6 m Large Aperture Telescope, located at an elevation of 5300 m on Cerro Toco in Chile. The Simons Observatory Large Aperture Telescope Receiver (LATR) is the cryogenic camera that will be coupled to the Large Aperture Telescope. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date, with a diameter of 2.4 m and a length of 2.6 m. The coldest stage of the camera is cooled to 100 mK, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system.
The Simons Observatory is a Cosmic Microwave Background experiment to observe the microwave sky in six frequency bands from 30 to 290 GHz. The Observatory—at ∼5200 m altitude—comprises three Small Aperture Telescopes and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its future timeline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.