Ensuring compliance with the General Data Protection Regulation (GDPR) is a crucial aspect of software development. This task, due to its time-consuming nature and requirement for specialized knowledge, is often deferred or delegated to specialized code reviewers. These reviewers, particularly when external to the development organization, may lack detailed knowledge of the software under review, necessitating the prioritization of their resources. To address this, we have designed two specialized views of a codebase to help code reviewers in prioritizing their work related to personal data: one view displays the types of personal data representation, while the other provides an abstract depiction of personal data processing, complemented by an optional detailed exploration of specific code snippets. Leveraging static analysis, our method identifies personal data-related code segments, thereby expediting the review process. Our approach, evaluated on four open-source GitHub applications, demonstrated a precision rate of 0.87 in identifying personal data flows. Additionally, we fact-checked the privacy statements of 15 Android applications. This solution, designed to augment the efficiency of GDPRrelated privacy analysis tasks such as the Record of Processing Activities (ROPA), aims to conserve resources, thereby saving time and enhancing productivity for code reviewers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.