Regulation of residual stress in a component is the key to improving its service performance. A cold expansion method was proposed for reducing the residual stress in 7050 aluminium alloy curved frame forging after quenching. The effect of the cold expansion method on the residual stress and equivalent plastic strain distribution of the 7050 aluminium alloy curved frame forging was investigated. The results showed that the maximum residual stress at the center thickness was reduced from 153 MPa to 94 MPa after the cold expansion, while it decreased from 283 MPa to 120 MPa at the surface with the highest stress reduction rate of 86.2%. The stress uniformity in the final forming region of the forging was improved. The equivalent plastic strain of the forging gradually decreases from the center to each side along the diameter of the expanded hole in cold expansion. The stress reduction effect matched with the distribution of equivalent plastic strain. The surface stress of the forging measured by x-rays diffraction (XRD) method was in agreement with the simulation results, and the reliability of the numerical model was verified. The cold expansion method can effectively reduce the quenched residual stress in curved frame forging.
The large quenched residual stress of large-scale aluminum alloy ring component induces severe deformation in the subsequent maching process. The conventional methods for reduction of residual stress (such as stepwise cold pressing and bulging) have little effect in the residual stress reduction for large-scale ring component and will induce inhomogeneous stress distribution. In this paper, roll bending process is adopted to reduce the quenched residual stress of 2219 aluminum alloy super-large ring. The numerical model of roll bending process was established, and the evolution and distribution of stress and strain after roll bending were studied. The in uence of roll winding number on the uniformity of stress and strain was analyzed. The results show that the arch-shaped quenched residual stress of the ring changes to N-shaped distribution from inside to outside after roll bending process. The value of the residual stress reduces from ±180MPa in quenched state to the value within ±50MPa in roll bended state.With the increase of roll winding number, the stress uniformity is improved, but the stress reduction amplitude is basically the same. By analyzing the elastic-plastic strain distribution characteristics and strain springback law of the ring after roll bending, the formation mechanism of N-shaped residual stress distribution after roll bending is revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.