In this work we used daily outpatient data from the Landseed Hospital in a heavily industrial area in northern Taiwan to study the associations between daily outpatient visits and air pollution in the context of a heavily polluted atmospheric environment in Chung-Li area during the period 2007–2011. We test the normality of each data set, control for the confounding factors, and calculate correlation coefficient between the outpatient visits and air pollution and meteorology, and use multiple linear regression analysis to seek significance of these associations. Our results show that temperature and relative humidity tend to be negatively associated with respiratory diseases. NO and are two main air pollutants that are positively associated with respiratory diseases, followed by , , , CO, and . Young outpatients (age 0–15 years) are most sensitive to changing air pollution and meteorology factors, followed by the eldest (age 66 years) and age 16–65 years of outpatients. Outpatients for COPD diseases are most sensitive to air pollution and meteorology factors, followed by allergic rhinitis, asthma, and pneumonia diseases. In the context of sex difference to air pollution and meteorological factors, male outpatients are more sensitive than female outpatients in the 16–65 age groups, while female outpatients are more sensitive than male outpatients in the young 0–15 age groups and in the eldest age groups. In total, female outpatients are more sensitive to air pollution and meteorological factors than male outpatients.
Toxic effects of air pollutants were individually identified in various organs of the body. However, the concurrent occurrences and the connection of diseases in multiple organs arise from air pollution has not been concurrently studied before. Here we hypothesize that there exist connected health effects arise from air pollution when diseases in various organs were considered together. We used medical data from hospital outpatient visits for various organs in the body with a disease-air pollution model that represents each of the diseases as a function of the environmental factors. Our results show that elevated air pollution risks (above 40%) concurrently occurred in diseases of spondylosis, cerebrovascular, pneumonia, accidents, chronic obstructive pulmonary disease (COPD), influenza, osteoarthritis (OA), asthma, peptic ulcer disease (PUD), cancer, heart, hypertensive, diabetes, kidney, and rheumatism. Air pollutants that were associated with elevated health risks are particular matters with diameters equal or less than 2.5 μm (PM 2.5 ), nitrogen dioxide (NO 2 ), ozone (O 3 ), particular matters with diameters equal or less than 10 μm (PM 10 ), carbon monoxide (CO), and nitrogen oxide (NO). Concurrent occurrences of diseases in various organs indicate that the immune system tries to connectively defend the body from persistent and rising air pollution.matter present in frontal and temporal lobes and corpus callosum 5 . Combustion-derived iron-rich magnetite nanoparticles from airborne particulate matter pollution were found in the human brain 13 , showing that air pollution particles were directly transported and deposited in the human brain. Mice exposed to elevated levels of NO 2 (2.5-5.0 mg/m 3 ) were found to show the deterioration of spatial learning and memory, aggravated amyloid β 42 accumulation, promoted pathological abnormalities, and cognitive defects related to Alzheimer's disease 14 . Humans exposed to NO 2 and PM 2.5 were positively correlated with the incidence of dementia in London, England 15 . Toxins accompanying air pollutants into the body exert chronic activation of microglia, leading to direct neuronal damage and neuronal death in the central nervous system 16 Delicate communication exists between the brain and the immune system 17,18 , and evidence that connects health and emotions through neural activity in the brain 19 . These pathophysiological findings reveal that air pollutants affected the central nervous system, leading to the decline of brain function 20 and fatal diseases 18 .Pathophysiological evidence convincingly showed pathways of various diseases arose from air pollution 21 . Hence, more diseases associated with air pollution remained to be discovered in the population 22 . Kampa and Castanas 23 and Jay 24 showed that diseases associated with air pollution were found in various parts of human organs: cardiovascular and circulatory system, digestive and excretory system, endocrine system, integumentary and exocrine system, lymphatic and immune system, muscular and skeletal s...
An accident is an unwanted hazard to a person. However, accidents occur. In this work, we search for correlations between daily accident rates and environmental factors. To study daily hospital outpatients who were admitted for accidents during a 5-year period, 2007–2011, we analyzed data regarding 168,366 outpatients using univariate regression models; we also used multivariable regression models to account for confounding factors. Our analysis indicates that the number of male outpatients admitted for accidents was approximately 1.31 to 1.47 times the number of female outpatients (P < 0.0001). Of the 12 parameters (regarding air pollution and meteorology) considered, only daily temperature exhibited consistent and significant correlations with the daily number of hospital outpatient visits for accidents throughout the 5-year analysis period. The univariate regression models indicate that older people (greater than 66 years old) had the fewest accidents per 1-degree increase in temperature, followed by young people (0–15 years old). Middle-aged people (16–65 years old) were the group of outpatients that were more prone to accidents, with an increase in accident rates of 0.8–1.2 accidents per degree increase in temperature. The multivariable regression models also reveal that the temperature variation was the dominant factor in determining the daily number of outpatient visits for accidents. Our further multivariable model analysis of temperature with respect to air pollution variables show that, through the increases in emissions and concentrations of CO, photochemical O3 production and NO2 loss in the ambient air, increases in vehicular emissions are associated with increases in temperatures. As such, increases in hospital visits for accidents are related to vehicular emissions and usage. This finding is consistent with clinical experience which shows about 60% to 80% of accidents are related to traffic, followed by accidents occurred in work place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.