A cold storage unit can store the cold energy off-peak and release it for building cooling on-peak, which can reduce the electricity load of air conditioning systems. N-tetradecane is a suitable cold storage material for air conditioning, with a phase change temperature of is 4–8 °C and a phase change enthalpy of 200 kJ/kg. However, its low thermal conductivity limits the application of n-Tetradecane for high-power cold storage/release. This paper prepares a tetradecane/expanded graphite (EG) composite phase change material (CPCM), whose thermal conductivity can be increased up to 21.0 W/m·K, nearly 100 times over the raw n-tetradecane. A novel model to predict the maximum loading fraction of paraffin in the EG matrix is presented, with an error within 1.7%. We also develop a thermal conductivity model to predict the thermal conductivity of the CPCM precisely, with an error of less than 10%. In addition, an innovative spiral wave plate cold storage tank has been designed for the tetradecane/EG composite. The power and energy density of the cold storage tank are significantly improved compared to that of raw tetradecane. The energy density reaches 40 kWh/m3, which is high among the organic PCM thermal storage tank. This paper shows the significance of thermal conductivity enhancement in designing a cold storage tank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.