<span style="font-family: Times New Roman; font-size: xx-small;"><span style="font-family: Times New Roman; font-size: xx-small;"><p>In this paper a backpropagation neural network based handwritten characters (Mapum Mayek ) recognition system of Manipuri Script is investigated. This paper presents various steps involved in the recognition process. It begins with thresholding of gray level image into binarised image, then from the binarised image the character pattern is segmented using connected component analysis and from the resized character matrix, its probabilistic features and fuzzy features are extracted. Using these features the network is trained and recognition tests are performed. Experiments indicate that the proposed recognition system performs well with the combined features and is robust to the writing variations that exist between persons and for a single person at different instances, thus being promising for user independent character recognition.</p></span></span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.