During inflation, there is a preferred reference frame in which the expansion of the background spacetime is spatially isotropic. In contrast to Minkowski spacetime, observables can depend on the velocity of the system with respect to this cosmic rest frame. We derive new constraints from radiative stability and unitarity on effective field theories with such spontaneously broken Lorentz symmetry. In addition to a maximum energy scale, there is now also a critical velocity at which the theory breaks down. The theory therefore has different resolving power in time and in space, and we show that these can only coincide if cubic Lorentz-violating interactions are absent. Applying these bounds to the Effective Field Theory of Inflation, we identify the region of parameter space in which inflation can be both single-field and weakly coupled on subhorizon scales. This can be implemented as a theoretical prior, and we illustrate this explicitly using Planck observational constraints on the primordial bispectrum.
In contrast to massless spinning particles, scalars are not heavily constrained by unitarity and locality. Off-shell, no gauge symmetries are required to write down manifestly local theories, while on-shell consistent factorisation is trivial. Instead a useful classification scheme for scalars is based on the symmetries they can non-linearly realise. Motivated by the breaking of Lorentz boosts in cosmology, in this paper we classify the possible symmetries of a shift-symmetric scalar that is assumed to non-linearly realise Lorentz boosts as, for example, in the EFT of inflation. Our classification method is algebraic; guided by the coset construction and inverse Higgs constraints. We rediscover some known phonon theories within the superfluid and galileid classes, and discover a new galileid theory which we call the extended galileid. Generic galileids correspond to the broken phase of galileon scalar EFTs and our extended galileids correspond to special subsets where each galileon coupling is fixed by an additional symmetry. We discuss the broken phase of theories that also admit a perturbation theory around Poincaré invariant vacua and we show that the so-called exceptional EFTs, the DBI scalar and special galileon, do not admit such a broken phase. Concentrating on DBI we provide a detailed account of this showing that the scattering amplitudes are secretly Poincaré invariant when the theory is expanded around the superfluid background used in the EFT of inflation. We point out that DBI is an exception to the common lore that the residue of the total energy pole of cosmological correlators is proportional to the amplitude. We also discuss the inevitability of poles in 2 → 2 scattering amplitudes when boost are spontaneously broken meaning that such theories do not admit Adler zeros and generalisations even in the presence of a shift symmetry.
We provide a complete classification of Poincar'e-invariant scalar field theories with an enlarged set of classical symmetries to leading order in derivatives, namely for the so-called P(X,ϕ) theories, in two or more spacetime dimensions. We find only three possibilities: Dirac-Born-Infeld, Cuscuton and Scaling theories. The latter two classes of actions involve an arbitrary function of the scalar field. As an application, we use the scaling symmetry to derive an infinite set of constraints on the Wilsonian coefficients of the low-energy Effective Field Theory. Furthermore, we study the extension of these results to cosmological (FLRW) and (Anti-)de Sitter spacetimes. We find in particular that the Cuscuton action has a generic set of symmetries around any background spacetime that possesses Killing vector fields, while the DBI actions have well-known analogues that we summarize explicitly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.