Automatically generated content is ubiquitous in the web: dynamic sites built using the three-tier paradigm are good examples (e.g., commercial sites, blogs and other sites edited using web authoring software), as well as less legitimate spamdexing attempts (e.g., link farms, faked directories).Those pages built using the same generating method (template or script) share a common "look and feel" that is not easily detected by common text classification methods, but is more related to stylometry.In this work we study and compare several HTML style similarity measures based on both textual and extra-textual features in HTML source code. We also propose a flexible algorithm to cluster a large collection of documents according to these measures. Since the proposed algorithm is based on locality sensitive hashing (LSH), we first review this technique.We then describe how to use the HTML style similarity clusters to pinpoint dubious pages and enhance the quality of spam classifiers. We present an evaluation of our algorithm on the WEBSPAM-UK2006 dataset.
The labelling of training examples is a costly task in a supervised classification. Active learning strategies answer this problem by selecting the most useful unlabelled examples to train a predictive model. The choice of examples to label can be seen as a dilemma between the exploration and the exploitation over the data space representation. In this paper, a novel active learning strategy manages this compromise by modelling the active learning problem as a contextual bandit problem. We propose a sequential algorithm named Active Thompson Sampling (ATS), which, in each round, assigns a sampling distribution on the pool, samples one point from this distribution, and queries the oracle for this sample point label. Experimental comparison to previously proposed active learning algorithms show superior performance on a real application dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.