Propylene and butylene glycol oligoether chains have been employed as alternatives to ethylene glycol in thiophene based semiconductors for OECTs. Their impact on electrochemical, microstructure, and swelling properties are discussed.
Advancements in organic electrochemical transistor (OECT) applications have been largely driven by the development of organic electronic materials that allow for simultaneous ionic and electronic transport in the bulk of their films. These studies focus on achieving high steady-state OECT performance, governed by the electronic charge mobility and the capacitance of the polymer film in the channel, and an often underlooked property is the long-term operational stability. In this work, we present a strategy to improve the performance of p-type OECTs along with operational stability via two additives, i.e., a high-boiling-point solvent (chlorobenzene) and a Lewis acid (tris(pentafluoro phenyl)borane). Addition of a small amount of a cosolvent additive changes the arrangement of glycolated thiophene-based copolymer chains on the substrate toward a direction that allows for more efficient hole transport. The Lewis acid, on the other hand, boosts the OECT stability, mainly by preventing oxidative degradation. Using both additives in the solution grants OECTs with high operational stability and performance through changes in the film microstructure and the polymer's sensitivity to oxygen. This study highlights the use of additives as a means to enhance the OECT figure of merits without the need for new polymer synthesis.
An n-type conjugated polymer based on diazaisoindigo (AIID) and fluorinated thiophene units is introduced. Combining the strong electron-accepting properties of AIID with backbone fluorination produced gAIID-2FT, leading to organic electrochemical transistors (OECTs) with normalized values of 4.09 F cm −1 V −1 s −1 and a normalized transconductance (g m,norm ) of 0.94 S cm −1 . The resulting OECTs exhibit exceptional operational stability and long shelf-life in ambient conditions, preserving 100% of the original maximum drain current after over 3 h of continuous operation and 28 days of storage in the air. Our work highlights the advantages of integrating strong electron acceptors with donor fluorination to boost the performance and stability of n-type OECTs.
The organic electrochemical transistor (OECT) is one of the most versatile building blocks within the bioelectronics device toolbox. While p‐type organic semiconductors have progressed as OECT channel materials, only a few n‐type semiconductors have been reported, precluding the development of advanced sensor‐integrated OECT‐based complementary circuits. Herein, green aldol polymerization is uses to synthesize lactone‐based n‐type conjugated polymers. Fluorination of the lactone‐based acceptor endows a fully locked backbone with a low‐lying lowest unoccupied molecular orbital, facilitating efficient ionic‐to‐electronic charge coupling. The resulting polymer has a record‐high n‐type OECT performance with a high product of mobility and capacitance (µC* = 108 F cm−1 V−1 s−1), excellent mobility (0.912 cm2 V−1 s−1), low threshold voltage (0.02 V), and fast switching speed (τON, τOFF = 336 µs,108 µs). This work demonstrates two types of device architectures and applications enabled by the high performance of this n‐type OECT, i.e., an artificial synapse and a complementary amplifier for detecting α‐synuclein, a potential biomarker of Parkinson's disease. This study shows that materials that enable high gain and fast speed n‐type OECTs can be developed via a green polymerization route, and the diverse form factors that these devices take promise for exploration of other application areas.
Organic electrochemical transistors (OECTs) are becoming increasingly ubiquitous in various applications at the interface with biological systems. However, their widespread use is hampered by the scarcity of electron-conducting (n-type) backbones and the poor performance and stability of the existing n-OECTs. Here, we introduce organic salts as a solution additive to improve the transduction capability, shelf life, and operational stability of n-OECTs. We demonstrate that the salt-cast devices present a 10-fold increase in transconductance and achieve at least one year-long stability, while the pristine devices degrade within four months of storage. The salt-added films show improved backbone planarity and greater charge delocalization, leading to higher electronic charge carrier mobility. These films show a distinctly porous morphology where the interconnectivity is affected by the salt type, responsible for OECT speed. The salt-based films display limited changes in morphology and show lower water uptake upon electrochemical doping, a possible reason for the improved device cycling stability. Our work provides a new and easy route to improve n-type OECT performance and stability, which can be adapted for other electrochemical devices with n-type films operating at the aqueous electrolyte interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.