Nimotuzumab is an EGFR-targeting antibody that has demonstrated encouraging clinical results in the absence of severe side-effects observed with other approved anti-EGFR antibodies. We investigated whether different clinical behavior of nimotuzumab is related to its bivalent/monovalent binding profile. Binding properties of nimotuzumab and cetuximab, the most development of anti-EGFR antibodies, were studied in vitro using chip surfaces and cells with varying EGFR expression levels. Experimental observations demonstrated that in contrast to cetuximab, the intrinsic properties of nimotuzumab required bivalent binding for stable attachment to the cellular surface, leading to nimotuzumab selectively binding to cells that express moderate to high EGFR expression levels. At these conditions, both antibodies bound bivalently, and accumulated to similar degrees. When EGFR density is low, nimotuzumab monovalent interaction was transient, whereas cetuximab continued to interact strongly with the receptors. We compared the in vitro anti-tumor efficacy of nimotuzumab and cetuximab. Cetuximab decreased the cell viability and induced apoptosis for all the tested cell lines, effects which did not depend on EGFR expression level. In contrast, nimotuzumab also provoked significant anti-cellular effects, but its anti-tumor capacity decreased together with EGFR expression level. Cetuximab Fab fragment was able to impact tumor cell survival, whereas nimotuzumab fragment totally lost this effect. Tumor-xenograft experiments using cells with a high EGFR expression revealed similar tumor growth inhibiting effects for both antibodies. This study suggests an explanation for nimotuzumab clinical profile, whereby anti-tumor activity is obtained in absence of severe toxicities due to its properties of bivalent binding to EGFR.
Tumor cell growth and survival can often be impaired by inactivating a single oncogen– a phenomenon that has been called as “oncogene addiction.” It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the “EGFR addiction” phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.
Background Since the COVID-19 outbreak an unprecedented challenge for healthcare systems around the world has been placed. In Cuba, the first case of COVID-19 was reported on March 11. Elderly with multiple comorbidities have been the most risky population. Although most patients present a mild to moderate disease, some have developed severe symptoms. One of the possible mechanisms underlying rapid disease progression is a cytokine storm, in which interleukin (IL) -6 seems to be a major mediator. Itolizumab is a humanized recombinant anti-CD6 monoclonal antibody (MAb), with the ability of reducing serum interferon gamma (INF-γ), tumour necrosis factor alpha (TNFα) and IL-6. Based on these previous results in patients with psoriasis and rheumatoid arthritis, an expanded access clinical trial was approved by the Cuban regulatory agency for COVID-19 critically, severely and moderately ill patients. Results We show here a short kinetic of IL-6 serum concentration in the first 24 COVID-19 patients treated with itolizumab. Most of patients were elderly with multiple comorbidities. We found that with one itolizumab dose, the circulating IL-6 decreased in critically and severely ill patients, whereas in moderately ill patients the values didn’t rise as compared to their low baseline levels. Conclusion These findings suggest that itolizumab could be an attractive therapeutic option to decrease the negative outcome of the cytokine storm in COVID-19 patients. Trial registration CECMED IIC RD-EC 179, RPCEC00000311. Registered 4 May 2020 - Retrospectively registered, http://rpcec.sld.cu/ensayos/RPCEC00000311-Sp or http://rpcec.sld.cu/trials/RPCEC00000311-En
Metastatic castration-resistant prostate cancer (CRPC) remains incurable due to the lack of effective therapies. Activation of the human epidermal growth factor receptor 1 (HER1) in prostate cancer contributes to metastatic progression as well as to disease relapse. Here, we determined the toxicity and immunogenicity of a HER1-based cancer vaccine in CRPC patients included in a phase I clinical trial. CRPC patients (n = 24) were intramuscularly vaccinated with HER1 vaccine consisting of the extracellular domain of HER1 molecule (ECD) and very small size proteoliposome from Neisseria meningitidis (VSSP) and Montanide ISA-51 VG as adjuvants. Patients were included in five groups according to the vaccine dose (100, 200, 400, 600, and 800 μg). The primary endpoints were safety and immunogenicity. The anti-HER1 antibodies were measured by an ELISA, the recognition of an HER1 positive tumor cell line and the inhibition of HER1 phosphorylation by sera were determined by flow cytometry and western blot analysis, respectively. The HER1-specific T cell response was assessed by determination of IFN-γ-producing T cells using ELISpot assay. The vaccine was well tolerated. No grade III or IV adverse events were reported. High titers of anti-HER1 antibodies were observed in most of the evaluated patients. There were no significant differences regarding the geometric means of the anti-HER1 titers among the dose groups except the group of 100 μg in which antibody titers were significantly lower. A Th1-type IgG subclasses pattern was predominant in most patients. Only patients receiving the higher doses of vaccine showed significant tumor cell recognition and HER1 phosphorylation inhibition by hyperimmune sera. Forty two percent of the patients showed a specific T cell response against HER1 peptides pool in post-treatment samples. There was a trend toward survival benefit in those patients showing high anti-HER1 specific antibody titers and a significant association between cellular immune response and clinical outcome.
Background: Since the COVID-19 outbreak an unprecedented challenge for healthcare systems around the world has been placed. In Cuba, the first case of COVID-19 was reported on March 11. Elderly with multiple comorbidities have been the most risky population. Although most patients present a mild to moderate disease, some have developed severe symptoms. One of the possible mechanisms underlying rapid disease progression is a cytokine storm, in which interleukin (IL) -6 seems to be a major mediator. Itolizumabis a humanized recombinant anti-CD6 monoclonal antibody(MAb), with the ability of reducingserum interferon gamma(INF-γ), tumournecrosis factor alpha(TNFα) and IL-6. Based on these previous results in patients with psoriasis and rheumatoid arthritis, an expanded access clinical trial was approved by the Cuban regulatory agency for COVID-19 critically, severely and moderately ill patients. Results: We show here a short kinetic of IL-6 serum concentration in the first 24 COVID-19 patients treated with itolizumab. Most of patients were elderly with multiple comorbidities.We found that with one itolizumabdose, the circulating IL-6 decreased in critically and severely ill patients, whereas in moderately ill patients the values didn’trise as compared to theirlow baseline levels.Conclusion: These findings suggest that itolizumabcould be an attractive therapeutic option to decrease the negative outcome of the cytokine storm in COVID-19 patients.Trial registration: CECMED IIC RD-EC 179, RPCEC00000311. Registered 4May 2020 - Retrospectively registered, http://rpcec.sld.cu/ensayos/RPCEC00000311-Sp or http://rpcec.sld.cu/trials/RPCEC00000311-En
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.