Summary Molecular mechanisms that concordantly regulate stress, lifespan and age-related physiological changes remain incompletely understood. Here, we demonstrate that in Drosophila, a p38 MAP Kinase (p38K)/Mef2/MnSOD pathway is a co-regulator of stress and lifespan in vivo. Hence, over-expression of p38K extends lifespan in a MnSOD-dependent manner, while inhibition of p38K causes early lethality and precipitates age-related motor dysfunction and stress sensitivity, that is rescued through muscle-restricted (but not neuronal) add-back of p38K. Additionally, mutations in p38K are associated with increased protein carbonylation and Nrf2-dependent transcription, while adversely affecting metabolic response to hypoxia. Mechanistically, p38K modulates expression of the mitochondrial MnSOD enzyme through the transcription factor Mef2, and predictably, perturbations in MnSOD modify p38K-dependent phenotypes. Thus, our results uncover a muscle-restricted p38K-Mef2-MnSOD signaling module that influences lifespan and stress, distinct from the Insulin/JNK/FOXO pathway. We propose that potentiating p38K might be instrumental in restoring the mitochondrial detoxification machinery and combating stress-induced aging.
Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that is linked to immune modulation and tissue regeneration. Here, we show that TNFR2 essentially promotes long-term pain resolution independently of sex. Genetic deletion of TNFR2 resulted in impaired neuronal regeneration and chronic nonresolving pain after chronic constriction injury (CCI). Further, pharmacological activation of TNFR2 using the TNFR2 agonist EHD2-sc-mTNFR2 in mice with chronic neuropathic pain promoted long-lasting pain recovery. TNFR2 agonist treatment reduced neuronal injury, alleviated peripheral and central inflammation, and promoted repolarization of central nervous system (CNS)-infiltrating myeloid cells into an antiinflammatory/reparative phenotype. Depletion of regulatory T cells (Tregs) delayed spontaneous pain recovery and abolished the therapeutic effect of EHD2-sc-mTNFR2. This study therefore reveals a function of TNFR2 in neuropathic pain recovery and demonstrates that both TNFR2 signaling and Tregs are essential for pain recovery after CCI. Therefore, therapeutic strategies based on the concept of enhancing TNFR2 signaling could be developed into a nonopioid therapy for the treatment of chronic neuropathic pain.
Tumor necrosis factor (TNF) is a proinflammatory cytokine, which is involved in physiological and pathological processes and has been found to be crucial for pain development. In the current study, we were interested in the effects of blocking Tumor necrosis factor receptor 1 (TNFR1) signaling on neuropathic pain after peripheral nerve injury with the use of transgenic mice and pharmacological inhibition. We have previously shown that TNFR1−/− mice failed to develop neuropathic pain and depressive symptoms after chronic constriction injury (CCI). To investigate the therapeutic effects of inhibiting TNFR1 signaling after injury, we delivered a drug that inactivates soluble TNF (XPro1595). Inhibition of solTNF signaling resulted in an accelerated recovery from neuropathic pain in males, but not in females. To begin exploring a mechanism, we investigated changes in N-methyl-D-aspartate (NMDA) receptors because neuropathic pain has been shown to invoke an increase in glutamatergic signaling. In male mice, XPro1595 treatment reduces elevated NMDA receptor levels in the brain after injury, whereas in female mice, NMDA receptor levels decrease after CCI. We further show that estrogen inhibits the therapeutic response of XPro1595 in females. Our results suggest that TNFR1 signaling plays an essential role in pain induction after CCI in males but not in females.
ObjectiveTo map the progression of osteoporosis following spinal cord injury in mice in specific areas and analyze changes in parathyroid hormone (PTH) and ion levels which could be responsible for overall bone loss.Summary of background dataSpinal cord injury rapidly induces severe bone loss compared to other conditions, yet the cause of this bone loss has not been identified. Studies suggest the bone loss after injury is not solely due to disuse.MethodsTo quantify bone loss we weighed individual bones and measured bone mineral density using dual energy X-ray absorptiometry at acute (1 week) and chronic (4 week) time points following a T9 contusion. An ELISA was used to measure blood PTH levels at 1 and 4 weeks after injury. Calcium and phosphate levels were also analyzed at 4 weeks following injury at the University of Miami pathology core.ResultsWe observed a significant decrease in bone mineral density in hind limbs after an acute injury, and found this bone loss to progress over time. Furthermore, following chronic injury a decrease in bone mineral density is also observed in bones above the level of injury and in the total bone mineral density. We observed a significant decrease in parathyroid hormone levels in injured mice at the chronic time point, but not at the acute time point which suggests this could be involved in the global bone loss following injury. We also observed a significant increase in serum calcium levels following injury which could account for the imbalance of PTH levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.