The leafcutter ants, which consist of Acromyrmex and Atta genera, are restricted to the New World and they are considered the main herbivores in the neotropics. Cytogenetic studies of leafcutter ants are available for five species of Atta and 14 species of Acromyrmex, both including subspecies. These two ant genera have a constant karyotype with a diploid number of 22 and 38 chromosomes, respectively. The most distinct Acromyrmex species from Brazil is A. striatus, which is restricted to the southern states of Santa Catarina and Rio Grande do Sul. Several cytogenetic and phylogenetic studies have been conducted with ants, but the karyotypic characterization and phylogenetic position of this species relative to leafcutter ants remains unknown. In this study, we report a diploid number of 22 chromosomes for A. striatus. The phylogenetic relationship between A. striatus and other leafcutter ants was estimated based on the four nuclear genes. A. striatus shared the same chromosome number as Atta species and the majority of metacentric chromosomes. Nuclear data generated a phylogenetic tree with a well-supported cluster, where A. striatus formed a different clade from other Acromyrmex spp. This combination of cytogenetic and molecular approaches provided interesting insights into the phylogenetic position of A. striatus among the leafcutter ants and the tribe Attini.
2010Phylogeography and historical demography of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae):incongruence between morphology and mitochondrial DNA APIDOLOGIE, v.41, n.5, p.534-547, 2010 http://producao.usp.br/handle/BDPI/15811 Abstract -The stingless bees are among the most abundant and ecologically important social invertebrates in tropical communities. The Neotropical stingless bee Melipona quadrifasciata has two subspecies: M. quadrifasciata quadrifasciata and M. quadrifasciata anthidioides. The main difference between subspecies are the yellow metassomal stripes, which are continuous in M. q. quadrifasciata and discontinuous in M. q. anthidioides. Recently, two populations were described with continuous stripes and inhabiting clearly disjunct areas in relation to M. q. quadrifasciata. We sequenced 852 bp of the mtDNA COI gene from 145 colonies from 56 localities, and for the first time performed a detailed phylogeographic study of a neotropical stingless bee. Phylogenetic analyses revealed the existence of two clades exhibiting a south to north distribution: southern populations comprise the subspecies M. q. quadrifasciata, and northern populations are composed of M. q. anthidioides and two disjunct populations with continuous stripes. The divergence time of these two phylogroups was estimated between 0.233 and 0.840 million years ago in the Pleistocene, a period of climatic changes and geomorphological alterations in the Neotropical region. No evidence of genetic structure in relation to the tergal stripes was found, indicating that the morphological trait regarding the pattern of stripes on tergites is not an accurate diagnostic for the subspecies of M. quadrifasciata. biogeography / coalescence / tergal stripes / Melipona quadrifasciata / subspecies
Internal transcribed spacer 1 (ITS-1) sequences of the nuclear rDNA of eight bee species of the genus Melipona were studied. Complete ITS-1 sequence and flanking regions from three Melipona species were PCR-amplified, cloned, sequenced, and their variability compared. These sequences show length variation (1391 to 1417 bp), several repeated elements of one, two, three, and four nucleotides, and a repeated tandem sequence of approximately 80 bp. The low variation level between M. quadrifasciata and M. mandacaia sequences supports the hypothesis that they diverged recently. PCR-amplification, cloning, and sequencing of a partial ITS-1 sequence (394 to 496 bp) of eight Melipona species and two outgroups were performed and the obtained sequences used for phylogenetic analysis. The single tree estimated from parsimony analysis recovered four well-defined clades and monophyly of the genus Melipona. The phylogenetic relationships derived from sequences of ITS-1 fragments corroborate the taxonomic classification of Melipona based on morphological characters.
Mitochondrial-like DNA (numt) has been found in a variety of insect species. In this work, our objective was to create a phylogeographic hypothesis of Melipona capixaba based on the complete COI sequence. However, several inconsistencies were found, such as 1-2-bp-long indels and a stop codon within the putative amino acid sequences. This led us to infer that M. capixaba has numts. A phylogenetic analysis which included COI sequences of several species of Melipona Illiger, 1806 revealed that numts are also common among other species of the genus. Based on our results, we have proposed a checklist to help to identify the most conspicuous numts; however, it does not ensure that all numts will be identified, since not all numts present explicit signals. Therefore, we recommend taking the maximum care in phylogeographic and phylogenetic analysis within Melipona as well as Hymenoptera, since several evidences of numts were found within this order. numts / cytochrome c oxidase subunit I / Melipona
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.