SummaryMultiple phosphatidylinositol (PtdIns) 3-kinases (PI3Ks) can produce PtdIns3P to control endocytic trafficking, but whether enzyme specialization occurs in defined subcellular locations is unclear. Here, we report that PI3K-C2α is enriched in the pericentriolar recycling endocytic compartment (PRE) at the base of the primary cilium, where it regulates production of a specific pool of PtdIns3P. Loss of PI3K-C2α-derived PtdIns3P leads to mislocalization of PRE markers such as TfR and Rab11, reduces Rab11 activation, and blocks accumulation of Rab8 at the primary cilium. These changes in turn cause defects in primary cilium elongation, Smo ciliary translocation, and Sonic Hedgehog (Shh) signaling and ultimately impair embryonic development. Selective reconstitution of PtdIns3P levels in cells lacking PI3K-C2α rescues Rab11 activation, primary cilium length, and Shh pathway induction. Thus, PI3K-C2α regulates the formation of a PtdIns3P pool at the PRE required for Rab11 and Shh pathway activation.
Recently, the orphan receptor G protein-coupled receptor 55 (GPR55) has been proposed as a potential cannabinoid receptor, although controversy remains on its physiological roles. Current evidence suggests a role for GPR55 as a receptor for the lysophospholipid lysophosphatidylinositol (LPI). In this study, we show that GPR55 is expressed in several prostate and ovarian cancer cell lines, both at the mRNA and at the protein level, and that it has a critical role in regulating proliferation and anchorage-independent growth. We further show that GPR55 mediates the effects of LPI in prostate and ovarian cancer cells. Indeed we demonstrate that LPI is able to induce calcium mobilization and activation of Akt and extracellular signal-regulated kinase (ERK)1/2 in these cells and that both pharmacological blockade of GPR55 and its downregulation using specific small interfering RNA strongly inhibits these processes. We further identify an autocrine loop by which LPI is synthesized by cytosolic phospholipase A2, pumped out of the cell by the ATP-binding cassette transporter ABCC1/MRP1, and is then able to initialize cascades downstream of GPR55. All together, these data demonstrate a role of LPI and its receptor GPR55 in cancer cells in activating an autocrine loop that regulates cell proliferation. These findings may have important implications for LPI as a novel cancer biomarker and for its receptor GPR55 as a potential therapeutic target.
The lipid products of phosphoinositide 3-kinase (PI3K) are involved in many cellular responses such as proliferation, migration, and survival. Disregulation of PI3K-activated pathways is implicated in different diseases including cancer and diabetes. Among the three classes of PI3Ks, class I is the best characterized, whereas class II has received increasing attention only recently and the precise role of these isoforms is unclear. Similarly, the role of phosphatidylinositol-3-phosphate (PtdIns-3-P) as an intracellular second messenger is only just beginning to be appreciated. Here, we show that lysophosphatidic acid (LPA) stimulates the production of PtdIns-3-P through activation of a class II PI3K (PI3K-C2β). Both PtdIns-3-P and PI3K-C2β are involved in LPA-mediated cell migration. This study is the first identification of PtdIns-3-P and PI3K-C2β as downstream effectors in LPA signaling and demonstration of an intracellular role for a class II PI3K. Defining this novel PI3K-C2β–PtdIns-3-P signaling pathway may help clarify the process of cell migration and may shed new light on PI3K-mediated intracellular events.
Class II isoforms of PI3K (phosphoinositide 3-kinase) are still the least investigated and characterized of all PI3Ks. In the last few years, an increased interest in these enzymes has improved our understanding of their cellular functions. However, several questions still remain unanswered on their mechanisms of activation, their specific downstream effectors and their contribution to physiological processes and pathological conditions. Emerging evidence suggests that distinct PI3Ks activate different signalling pathways, indicating that their functional roles are probably not redundant. In the present review, we discuss the recent advances in our understanding of mammalian class II PI3Ks and the evidence suggesting their involvement in human diseases.
The members of the class II phosphoinositide 3-kinase (PI3K) family can be activated by several stimuli, indicating that these enzymes can regulate many intracellular processes. Nevertheless, to date, there has been no definitive identification of their in vivo product, their mechanism(s) of activation, or their precise intracellular roles. By metabolic labeling, we here identify phosphatidylinositol 3-phosphate as the sole in vivo product of the insulin-dependent activation of PI3K-C2␣, confirming the emerging role of such a phosphoinositide in signaling. We demonstrate that activation of PI3K-C2␣ involves its recruitment to the plasma membrane and that activation is mediated by the GTPase TC10. This is the first report showing a membrane targeting-mediated mechanism of activation for PI3K-C2␣ and that a small GTP-binding protein can activate a class II PI3K isoform. We also demonstrate that PI3K-C2␣ contributes to maximal insulin-induced translocation of the glucose transporter GLUT4 to the plasma membrane and subsequent glucose uptake, definitely assessing the role of this enzyme in insulin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.