Infections with protozoan parasites are a major cause of disease and mortality in many tropical countries of the world. Diseases caused by species of the genera Trypanosoma (Human African Trypanosomiasis and Chagas Disease) and Leishmania (various forms of Leishmaniasis) are among the seventeen "Neglected Tropical Diseases" (NTDs) defined as such by WHO due to the neglect of financial investment into research and development of new drugs by a large part of pharmaceutical industry and neglect of public awareness in high income countries. Another major tropical protozoan disease is malaria (caused by various Plasmodium species), which -although not mentioned currently by the WHO as a neglected disease- still represents a major problem, especially to people living under poor circumstances in tropical countries. Malaria causes by far the highest number of deaths of all protozoan infections and is often (as in this review) included in the NTDs. The mentioned diseases threaten many millions of lives world-wide and they are mostly associated with poor socioeconomic and hygienic environment. Existing therapies suffer from various shortcomings, namely, a high degree of toxicity and unwanted effects, lack of availability and/or problematic application under the life conditions of affected populations. Development of new, safe and affordable drugs is therefore an urgent need. Nature has provided an innumerable number of drugs for the treatment of many serious diseases. Among the natural sources for new bioactive chemicals, plants are still predominant. Their secondary metabolism yields an immeasurable wealth of chemical structures which has been and will continue to be a source of new drugs, directly in their native form and after optimization by synthetic medicinal chemistry. The current review, published in two parts, attempts to give an overview on the potential of such plant-derived natural products as antiprotozoal leads and/or drugs in the fight against NTDs.
We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates, which were identified using molecular methods as belonging to 21 genera and 50 taxa. The most frequent taxa were Geomyces species (sp.), Penicillium sp. and Metschnikowia australis. Seven fungal isolates associated with the endemic Antarctic macroalgae Monostroma hariotii (Chlorophyte) displayed high internal transcribed spacer sequences similarities with the psychrophilic pathogenic fungus Geomyces destructans. Thirty-three fungal singletons (66%) were identified, representing rare components of the fungal communities. The fungal communities displayed high diversity, richness and dominance indices; however, rarefaction curves indicated that not all of the fungal diversity present was recovered. Penicillium sp. UFMGCB 6034 and Penicillium sp. UFMGCB 6120, recovered from the endemic species Palmaria decipiens (Rhodophyte) and M. hariotii, respectively, yielded extracts with high and selective antifungal and/or trypanocidal activities, in which a preliminary spectral analysis using proton nuclear magnetic resonance spectroscopy indicated the presence of highly functionalised aromatic compounds. These results suggest that the endemic and cold-adapted macroalgae of Antarctica shelter a rich, diversity and complex fungal communities consisting of a few dominant indigenous or mesophilic cold-adapted species, and a large number of rare and/or endemic taxa, which may provide an interesting model of algal-fungal interactions under extreme conditions as well as a potential source of bioactive compounds.
The degradation of tetracycline (1) by ozone in aqueous solution was investigated. High performance liquid chromatography (HPLC), UV-visible spectroscopy (UV-Vis), and total organic carbon (TOC) analyses revealed that although tetracycline was quickly consumed under this oxidative condition, it did not mineralize at all. Continuous monitoring by electrospray ionization mass spectrometry in the positive ion mode, ESI(ϩ)-MS, revealed that tetracycline (1), detected in its protonated form ([1 ϩ H] ϩ ) of m/z 445, reacted to yield almost exclusively two unprecedented oxidation products (2 and 3) via a net insertion of one and two oxygen atoms, respectively. Compound 2, suggested to be formed via an initial 1,3-dipolar cycloaddition of ozone at the C11a-C12 double-bond of 1, and Compound 3, proposed to be produced via a subsequent ozone attack at the C2-C3 double-bond of 2, were detected in their protonated forms in the ESI(ϩ)-MS, i.e.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.