This study investigated the physicochemical and mechanical properties of a novel edible film based on chia mucilage (CM) hydrocolloid. CM (1% w/v) films were prepared by incorporation of three concentrations of glycerol (25%, 50%, and 75% w/w, based on CM weight). As glycerol concentration increased, water vapor permeability (WVP), elongation at break (EB), and water solubility of CM films increased while their tensile strength (TS), and Young's modulus (YM) decreased significantly (p<0.05). CM films containing a high concentration of glycerol were slightly reddish and yellowish in color but still had a transparent appearance. CM films exhibited excellent absorption of ultraviolet light, and good thermal stability. The scanning electron micrographs showed that all CM films had a uniform appearance. This study demonstrated that the chia mucilage hydrocolloid has important properties and potential as an edible film, or coating.
In order to develop safer processes for the food industry, we prepared a chitosan support with the naturally occurring crosslinking reagent, genipin, for enzyme. As application model, it was tested for the immobilization of β-D-galactosidase from Aspergillus oryzae. Chitosan particles were obtained by precipitation followed by adsorption of the enzyme and crosslinking with genipin. The particles were characterized by Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The immobilization of the enzyme by crosslinking with genipin provided biocatalysts with satisfactory activity retention and thermal stability, comparable with the ones obtained with the traditional methodology of immobilization using glutaraldehyde. β-D-Galactosidase-chitosan-genipin particles were applied to galactooligosaccharides synthesis, evaluating the initial lactose concentration, pH and temperature, and yields of 30% were achieved. Moreover, excellent operational stability was obtained, since the immobilized enzyme maintained 100% of its initial activity after 25 batches of lactose hydrolysis. Thus, the food grade chitosan-genipin particles seem to be a good alternative for application in food process.
The effect of the support size on the properties of enzyme immobilization was investigated by using chitosan macroparticles and nanoparticles. They were prepared by precipitation and ionotropic gelation, respectively, and were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), transmission electron microscopy (TEM), light scattering analysis (LSA), and N(2) adsorption-desorption isotherms. β-Galactosidase was used as a model enzyme. It was found that the different sizes and porosities of the particles modify the enzymatic load, activity, and thermal stability of the immobilized biocatalysts. The highest activity was shown by the enzyme immobilized on nanoparticles when 204.2 mg protein·(g dry support)(-1) were attached. On the other hand, the same biocatalysts presented lower thermal stability than macroparticles. β-Galactosidase immobilized on chitosan macro and nanoparticles exhibited excellent operational stability at 37 °C, because it was still able to hydrolyze 83.2 and 75.93% of lactose, respectively, after 50 cycles of reuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.