Chikungunya virus (CHIKV; genus Alphavirus, family Togaviridae) has recently caused several major outbreaks affecting millions of people. There are no licensed vaccines or antivirals, and the knowledge of the molecular biology of CHIKV, crucial for development of efficient antiviral strategies, remains fragmentary. CHIKV has a 12 kb positive-strand RNA genome, which is translated to yield a nonstructural (ns) or replicase polyprotein. CHIKV structural proteins are expressed from a subgenomic RNA synthesized in infected cells. Here we have developed CHIKV trans-replication systems, where replicase expression and RNA replication are uncoupled. Bacteriophage T7 RNA polymerase or cellular RNA polymerase II were used for production of mRNAs for CHIKV ns polyprotein and template RNAs, which are recognized by CHIKV replicase and encode for reporter proteins. CHIKV replicase efficiently amplified such RNA templates and synthesized large amounts of subgenomic RNA in several cell lines. This system was used to create tagged versions of ns proteins including nsP1 fused with enhanced green fluorescent protein and nsP4 with an immunological tag. Analysis of these constructs and a matching set of replicon vectors revealed that the replicases containing tagged ns proteins were functional and maintained their subcellular localizations. When cells were co-transfected with constructs expressing template RNA and wild type or tagged versions of CHIKV replicases, formation of characteristic replicase complexes (spherules) was observed. Analysis of mutations associated with noncytotoxic phenotype in CHIKV replicons showed that a low level of RNA replication is not a pre-requisite for reduced cytotoxicity. The CHIKV trans-replicase does not suffer from genetic instability and represents an efficient, sensitive and reliable tool for studies of different aspects of CHIKV RNA replication process.
Chikungunya virus (CHIKV), genus Alphavirus, family Togaviridae, has a positive-stand RNA genome approximately 12 kb in length. In infected cells, the genome is translated into non-structural polyprotein P1234, an inactive precursor of the viral replicase, which is activated by cleavages carried out by the non-structural protease, nsP2. We have characterized CHIKV nsP2 using both cell-free and cell-based assays. First, we show that Cys478 residue in the active site of CHIKV nsP2 is indispensable for P1234 processing. Second, the substrate requirements of CHIKV nsP2 are quite similar to those of nsP2 of related Semliki Forest virus (SFV). Third, substitution of Ser482 residue, recently reported to contribute to the protease activity of nsP2, with Ala has almost no negative effect on the protease activity of CHIKV nsP2. Fourth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 completely abolished RNA replication in CHIKV and SFV trans-replication systems. In contrast, trans-replicases with Ser482 to Ala mutation were similar to wild type counterparts. Fifth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 abolished the rescue of infectious virus from CHIKV RNA transcripts while Ser482 to Ala mutation had no effect. Thus, CHIKV nsP2 is a cysteine protease.Chikungunya virus (CHIKV) belongs to genus Alphavirus (family Togaviridae). It is transmitted by Aedes mosquitoes and has caused several massive outbreaks since 2004 1 . CHIKV has a positive-strand RNA genome approximately 12 kb in length. A large 5′ open reading frame (ORF), which covers 2/3 of the viral genome, is translated directly from the viral genomic RNA and encodes for a non-structural (ns) polyprotein designated as P1234. The second ORF encodes for the precursors of viral structural proteins and is translated from a specific subgenomic RNA synthesized in virus-infected cells 2 .All virus-specific enzymatic activities, required for viral RNA synthesis, are present in P1234 and its cleavage products 3 . Allthough uncleaved P1234 possesses several enzymatic activities 4 , it is incapable of performing viral RNA replication at detectable levels 5 . To become active, P1234 must first be processed into the early replicase (P123 polyprotein + nsP4). This complex can, in principle, perform all the essential steps of viral RNA synthesis 6 . However, during alphavirus infection the early replicase is converted into the mature (nsP1 + nsP2 + nsP3 + nsP4) form 7 . All these cleavages are performed by a protease located at the C-terminus of nsP2 [8][9][10] and the processing of P1234 is regulated at multiple levels [11][12][13][14] .The protease part of nsP2 can be easily purified as an active recombinant protein 10,15 . In addition, the protease activity of nsP2 can be studied using in vitro translation and cell culture models 9,16 . Early studies showed that alphavirus nsP2 is similar to papaine-like proteases. The catalytic dyad of Sindbis virus (SINV) nsP2 is represented by Cys481 and His558 residues 8,17,18 ; these correspond to Cys478 and His54...
Alphaviruses are positive-strand RNA viruses expressing their replicase as a polyprotein, P1234, which is cleaved to four final products, nonstructural proteins nsP1 to nsP4. The replicase proteins together with viral RNA and host factors form membrane invaginations termed spherules, which act as the replication complexes producing progeny RNAs. We have previously shown that the wild-type alphavirus replicase requires a functional RNA template and active polymerase to generate spherule structures. However, we now find that specific partially processed forms of the replicase proteins alone can give rise to membrane invaginations in the absence of RNA or replication. The minimal requirement for spherule formation was the expression of properly cleaved nsP4, together with either uncleaved P123 or with the combination of nsP1 and uncleaved P23. These inactive spherules were morphologically less regular than replication-induced spherules. In the presence of template, nsP1 plus uncleaved P23 plus nsP4 could efficiently assemble active replication spherules producing both negative-sense and positive-sense RNA strands. P23 alone did not have membrane affinity, but could be recruited to membrane sites in the presence of nsP1 and nsP4. These results define the set of viral components required for alphavirus replication complex assembly and suggest the possibility that it could be reconstituted from separately expressed nonstructural proteins. All positive-strand RNA viruses extensively modify host cell membranes to serve as efficient platforms for viral RNA replication. Alphaviruses and several other groups induce protective membrane invaginations (spherules) as their genome factories. Most positive-strand viruses produce their replicase as a polyprotein precursor, which is further processed through precise and regulated cleavages. We show here that specific cleavage intermediates of the alphavirus replicase can give rise to spherule structures in the absence of viral RNA. In the presence of template RNA, the same intermediates yield active replication complexes. Thus, partially cleaved replicase proteins play key roles that connect replication complex assembly, membrane deformation, and the different stages of RNA synthesis.
The nodavirus flock house virus (FHV) and the alphavirus Semliki Forest virus (SFV) show evolutionarily intriguing similarities in their replication complexes and RNA capping enzymes. In this study, we first established an efficient FHV trans-replication system in mammalian cells, which disjoins protein expression from viral RNA synthesis. Following transfection, FHV replicase protein A was associated with mitochondria, whose outer surface displayed pouch-like invaginations with a ‘neck’ structure opening towards the cytoplasm. In mitochondrial pellets from transfected cells, high-level synthesis of both genomic and subgenomic RNA was detected in vitro and the newly synthesized RNA was of positive polarity. Secondly, we initiated the study of the putative RNA capping enzyme domain in protein A by mutating the conserved amino acids H93, R100, D141, and W215. RNA replication was abolished for all mutants inside cells and in vitro except for W215A, which showed reduced replication. Transfection of capped RNA template did not rescue the replication activity of the mutants. Comparing the efficiency of SFV and FHV trans-replication systems, the FHV system appeared to produce more RNA. Using fluorescent marker proteins, we demonstrated that both systems could replicate in the same cell. This work may facilitate the comparative analysis of FHV and SFV replication.
Alphaviruses are positive-strand RNA viruses causing febrile disease. Macrodomain-containing proteins, involved in ADP-ribose mediated signaling, are encoded by both host cells and several virus groups, including alphaviruses. In this study, compound MRS 2578 that targets the human MacroD1 protein inhibited Semliki Forest virus production as well as viral RNA replication and replicase protein expression. The inhibitor was similarly active in alphavirus trans -replication systems, indicating that it targets the viral RNA replication stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.