SUMMARYDiabetes mellitus is a metabolic disorder that may arise from diet habits and is growing to epidemic proportions. Young male diabetic patients present high infertility/subfertility prevalence resulting from impaired reproductive function and poor semen quality. We aimed to evaluate the effects of a high-energy diet (HED) on glucose tolerance/insulin levels and correlate the observed effects on male reproductive function with overall testicular metabolism. After 1 month, HED fed rats showed increased glycaemic levels, impaired glucose tolerance and hypoinsulinaemia. Moreover, an imbalance of intratesticular and serum testosterone levels was observed, whereas those of 17b-estradiol were not altered. High-energy diet also affected the reproductive parameters, with HED rats exhibiting a significant increase in abnormal sperm morphology. Glycolytic metabolism was favoured in testicles of HED rats with an increased expression of both glucose transporters 1 (GLUT1) and 3 (GLUT3) and the enzyme phosphofrutokinase 1. Moreover, lactate production and the expression of metabolism-associated genes and proteins involved in lactate production and transport were also enhanced by HED. Alanine testicular content was decreased and thus intratesticular lactate/alanine ratio in HED rats was increased, suggesting increased oxidative stress. Other energetic substrates such as acetate and creatine were not altered in testis from HED rats, but intratesticular glycine content was increased in those animals. Taken together, these results suggest that HED induces a pre-diabetic state that may impair reproductive function by modulating overall testicular metabolism. This is the first report on testicular metabolic features and mechanisms related with the onset of a pre-diabetic state.
Abstract:The development of a "male pill" to control fertility is still a major challenge. Although women have several options to play an active role in the couple family planning, men are very limited in terms of contraceptive methods. Several approaches have been proposed to develop a male contraceptive and can be divided in two major groups: hormonal and non-hormonal methods. Within the testis, the somatic Sertoli cell (SC) is known as the "nurse cell" since it provides the physical and nutritional support for the developing germ cells. Moreover, adjacent SCs form the Sertoli/blood testis barrier (BTB), which divides the seminiferous epithelium into the basal and the apical compartments, controlling the passage of substances to the site where germ cells develop. Among the several functions of SC, its metabolism and the production of lactate, acetate and other metabolic factors are essential for the normal occurrence of spermatogenesis. In the last years, several works have highlighted that the metabolic cooperation established between SCs and developing germ cells is compromised in several diseases associated with male subfertility/infertility. Notably, several metabolismassociated proteins are specifically expressed in the testis. Thus, there are several evidences illustrating that the control of male fertility can be achieved by targeting testicular cells metabolism. Herein, we discuss the metabolic cooperation in testis as a potential pharmacological target to counteract subfertility/infertility promoted by several diseases, particularly metabolic diseases. We also discuss how it can contribute to the development of a male contraceptive.
Purpose Aberrant expression of seminal plasma proteins are associated with altered homeostasis that may affect the fertilizing ability of spermatozoa. However, the precise roles of seminal exosomes on sperm function remain unclear. The objective of this study was to identify the differentially expressed proteins (DEPs) associated with varicocele-mediated infertility by comparing seminal plasma protein profile of unilateral varicocele patients with proven fertile donors. Materials and Methods Semen samples were obtained from 10 proven fertile donors with normal semen parameters and 33 infertile patients with unilateral varicocele. For proteomic analysis, 5 samples from each group were pooled and run in triplicate. Key DEPs (ANXA2, TF, CD63, KIF5B, SEMG1) associated with the exosome function were selected by bioinformatic tools and validated using Western blotting. Results A total of 47 seminal plasma proteins were differentially expressed in unilateral varicocele patients compared to fertile donors. Validation of exosome-associated DEPs in unilateral varicocele patients (n=7) and fertile donors (n=7) revealed significant upregulation of ANXA2 (p=0.0016) and downregulation of KIF5B (p=0.009). The main upstream regulators of the DEPs in seminal plasma of unilateral varicocele group were androgen receptor, YB1 and NRF2. Conclusions This is the first report to identify DEPs in seminal plasma of unilateral varicocele patients compared to fertile donors. Based on the detection of DEPs associated with exosomal function, Western blotting was used to validate the presence of defective exosome machinery in seminal plasma of unilateral varicocele patients. KIF5B and ANXA2 can be utilized as potential biomarkers of infertility in unilateral varicocele patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.