Two in one: A new iron(II) complex with short alkyl substituents exhibits an unprecedented bimodal behavior governed by the coexistence of three phases: two structurally different low-spin phases and one high-spin phase. The compound features two distinct well-separated strong cooperative spin-crossover transitions by varying the scan rate (see graphic).
[Fe(tvp)2 (NCS)2 ] (1) (tvp=trans-(4,4'-vinylenedipyridine)) consists of two independent perpendicular stacks of mutually interpenetrated two-dimensional grids. This uncommon supramolecular conformation defines square-sectional nanochannels (diagonal≈2.2 nm) in which inclusion molecules are located. The guest-loaded framework 1@guest displays complete thermal spin-crossover (SCO) behavior with the characteristic temperature T1/2 dependent on the guest molecule, whereas the guest-free species 1 is paramagnetic whatever the temperature. For the benzene-guest derivatives, the characteristic SCO temperature T1/2 decreases as the Hammet σp parameter increases. In general, the 1@guest series shows large entropy variations associated with the SCO and conformational changes of the interpenetrated grids that leads to a crystallographic-phase transition when the guest is benzonitrile or acetonitrile/H2 O.
Herein, we report a way to achieve abrupt high-spin to low-spin transition with controllable transition temperature and hysteresis width, relying not on solid-state cooperative interactions, but utilizing coherency between phase and spin transitions in neutral Fe(II) meltable complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.