Advances in materials engineering have allowed for the development of sophisticated and controlled drug delivery through vesicles. Smart vesicles, capable of sensing single stimulus or multiple stimuli, can be engineered to process specific environmental signals to produce a tailored response. Exhibiting multifunctionality and theranostic abilities, they are a promising platform for new therapeutic methods. Here, we discuss smartness in the context of biosensing vesicles, followed by the various components required to develop a smart vesicle and the design considerations regarding engineering approaches of each. We then focus on biomedical applications of the vesicles in disease treatment and biosensing.
Slide-free microscopy techniques have been proposed for accelerating standard histopathology and intraoperative guidance. One such technology is quantitative oblique back-illumination microscopy (qOBM), which enables real-time, label-free quantitative phase imaging of thick, unsectioned in-vivo and ex-vivo tissues. However, the grayscale phase contrast provided by qOBM differs from the colored histology images familiar to pathologists and clinicians, limiting its current potential for adoption. Here we demonstrate the application of unsupervised deep learning using a Cycleconsistent Generative Adversarial Network (CycleGAN) model to transform qOBM images into virtual hematoxylin and eosin (H&E)-stained images. The models were trained on a dataset of qOBM and H&E images of similar regions in excised brain tissue from a 9L gliosarcoma rat tumor model. We observed successful qOBM-to-H&E conversion of both uninvolved and tumor-containing specimens, as demonstrated by a classifier test. We describe several crucial preprocessing steps that improve the quality of conversion, such as intensity inversion, pixel harmonization, and color normalization. This unsupervised deep learning framework does exhibit occasional subpar performance; for example, as with GANs in general, it can create so-called "hallucinations", displaying features not actually present in the original qOBM images. We anticipate that this behavior can be minimized with more extensive training and deployment of advanced ML techniques, and that virtual-H&E-converted qOBM imaging will prove safe and appropriate for rapid tissue imaging applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.