The stability of the water-in-oil emulsions highly depends on the existence of the polar components and their interactions within the emulsions. Asphaltenes, resins, and water are the main polar components of the emulsions. As the stability of the emulsions increases, the emulsion breaking becomes more difficult and requires more energy and chemical input. With this study, we propose a significant reduction in energy and chemical use for efficient break up of water-in-oil emulsions through the application of microwave heating. To demonstrate this concept, we conduct experiments on different emulsions originated from Steam Assisted Gravity Drainage (SAGD) and Expanding Solvent-SAGD (ES-SAGD), and investigate how the polar components initially present in the emulsions affect the microwave efficiency. Water, a polar molecule, which is the main component in emulsions, was expected to allow the most efficient microwave absorption. However, our results show that asphaltenes and resins have greater role than the water component of emulsions during emulsion breaking with microwave heating.
Summary
This study investigates the effect of clay type on the performance variations of steam-assisted gravity drainage (SAGD). Two SAGD experiments at identical experimental conditions were conducted. The reservoir rock for the first experiment (SAGD1) is prepared with a sand (85 wt%) and kaolinite (15 wt%) mixture, and the second experiment (SAGD2) is prepared with a sand (85 wt%), kaolinite (13.5 wt%), and illite (1.5 wt%) mixture. The effectiveness of the steam-chamber growth did not change with the clay type; however, 15-wt% reduction in oil recovery was observed for SAGD2. The possible reasons were investigated with the analyses on the produced-water, the produced-oil, and the spent-rock samples. Contact-angle, particle-size, zeta-potential, and interfacial-tension measurements were carried out on the samples. The mineralogical changes on spent-rock samples were determined by X-ray diffraction (XRD) and scanning-electron-microscope (SEM) analyses. The contact-angle measurements on the spent-rock samples displayed the higher oil-wetness for SAGD2 than SAGD1. However, the water-wetness of illite is known to be higher than that of kaolinite. This unexpected result is explained by the interaction of illite and the asphaltenes from SAGD2. The particle-size measurements, along with the SEM images, on post-mortem samples reveal that illite containing clay exhibits cementation behaviour and, hence, reduces the permeability of the rock. According to the experimental results, we developed hypotheses to understand the bitumen/illite and bitumen/kaolinite interactions for SAGD. Because of the high water-wetness of illite, illite particles first interact with water. This interaction results in cementation and forms illite lumps with sand. Then, illite lumps continue to interact more vigorously with the polar molecules (water, asphaltenes, and resins). Clay migration and production occur in both clay types; however, while kaolinite is produced in the water phase, illite-containing clay as a result of its interaction with asphaltenes is produced in the oil phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.